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Abstract

Puzzlingly, the literature has shown that behavioral factors capturing mispricing, the neoclassical-
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lagged volatility. We compare asset pricing models conditionally, when the strategy really works, and find

the unconditional fit misleading. Models fit well most times but not when profits are produced. Strik-
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underreaction channel.
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“Effort should be focused on ruling out alternative explanations for momentum

and trying to hone in on the“true” explanation(s) rather than allowing the finding

to get “over-identified” via multiple stories for the same phenomenon.”

—Subrahmanyam (2018).

1 Introduction

Momentum is a pervasive anomaly in US markets for more than 200 years and confirmed

out of sample in at least 40 countries (Geczy and Samonov 2016; Asness, Moskowitz, and

Pedersen 2013). Asness, Frazzini, Israel, and Moskowitz (2014) remarks that “[..] it has

been a part of markets since their very existence”. Momentum has long been seen as a

puzzle.1 But this puzzle changed. Since its discovery, many theoretical explanations for the

phenomenon have been proposed.2 A problem is that most of the work proposing theories

focuses on testing isolated explanations. Subrahmanyam (2018) points out that this has

gradually created a situation with too many theories to explain the same phenomenon.

Furthermore, those theories do not fit well together motivating the need for new “out-of-

sample” ways to test them comparatively. Goyal, Jegadeesh, and Subrahmanyam (2025)

recently perform such a comparative exercise in an international setting.

In this study, we work with similar spirit to Goyal, Jegadeesh, and Subrahmanyam (2025)

but take a very different path. We note that momentum is far from an “all-weather” strategy

as it has strongly predictable performance and a propensity to produce large crashes which

can wipe out decades of returns (Cooper, Gutierrez Jr., and Hameed 2004; Barroso and

Santa-Clara 2015; Daniel and Moskowitz 2016). Namely, the realized volatility of momentum

successfully captures conditionality in mean returns, volatility, Sharpe ratios, and skewness of

the strategy (Barroso and Santa-Clara 2015; Barroso, Edelen, and Karehnke 2022). We build

on this literature showing that momentum’s performance is strongly negatively predicted by

1For example, Fama and French (1996) dub it the ‘main embarrassment’ (page 81) of their original
multifactor model. However, later the factor is ‘somewhat reluctantly’ included in the factor model of Fama
and French (2018).

2A non-exhaustive list of notable examples of proposed explanations includes underreaction (Barberis,
Shleifer, and Vishny 1998; Hong and Stein 1999), overreaction (Daniel, Hirshleifer, and Subrahmanyam
1998), business cycle risk exposures (Chordia and Shivakumar 2002), growth options of winners (Sagi and
Seasholes 2007), the neoclassical q-factor model (Hou, Xue, and Zhang 2015), and momentum in factors
(Ehsani and Linnainmaa 2022).
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its lagged volatility, to examine leading explanations for the anomaly in a conditional setting.

The leading theories we examine are 1) underreaction (Jegadeesh and Titman 1993; Hong

and Stein 1999; Daniel, Hirshleifer, and Sun 2020), 2) the capital asset pricing model based

on the neoclassical q-theory of investment (Hou, Xue, and Zhang 2015, hereafter, investment

CAPM), and 3) factor momentum (Ehsani and Linnainmaa 2022). We pick these as they all

span momentum in standard unconditional tests while coming from very different theoretical

explanations.3

The economic drivers of momentum in our core set of theories could hardly be more di-

verse. In the investment CAPM—likely the first APT-like factor model spanning momentum—

winners have higher returns (mostly) due to their loading on a profitability risk factor mo-

tivated by the firm value optimization problem. The resulting q-factor model successfully

spans many test assets besides momentum, granting this multifactor explanation additional

relevance. The model of Daniel, Hirshleifer, and Sun (2020) includes an underreaction factor

while also spanning a large set of anomalies. As underreaction is an influential explanation

for momentum in the behavioral literature, this merits its inclusion in our set of leading

explanations. Factor momentum is of great theoretical consequence as it posits that mo-

mentum does not exist as a standalone factor, it merely “times other factors”. Ehsani and

Linnainmaa (2022) show that a model combining their factor momentum portfolio with the

Fama and French (2015) 5-factor model spans conventional stock momentum. Persistent

factor returns would therefore create the illusion of momentum in individual stocks.

It is hard to assess if our core set of three explanations are truly incompatible between

themselves. Investor behavioral biases can work their way into factor premiums if asset

returns are characterized by a strong underlying factor structure (Kozak, Nagel, and Santosh

2018). Thus, for instance, the investment CAPM might be compatible with an underreaction

story.4 Also, the question of what drives momentum does not need to be binary: it is possible

that several theories capture different drivers of the anomaly and they all play a role (of equal

3In subsection 3.7 we expand the discussion to six more leading theories of momentum or of its condi-
tionality.

4Hou, Xue, and Zhang (2015) explain that “our evidence is not inconsistent with mispricing. If waves of
investor sentiment affect stocks with similar investment or stocks with similar profitability simultaneously,
the q-factor model would work in the data as well”. Yet, Zhang (2017)’s survey on the investment CAPM
characterizes it as “an inevitable response to the anomalies literature and its challenge to efficient markets
[...]”. In our paper, we respect this characterization of one of its authors when referring to it as a risk-based
theory.
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importance or not). Regardless, this current state of observational equivalence is leaving on

the table an important element: the time series properties of momentum.

In our study we start by confirming that our set of core factor models all span momentum

unconditionally. Then, we examine if the same ability holds conditionally using a regression

specification where momentum’s loadings on factors are allowed to vary across volatility

states. It is important to recognize that previous evidence on the conditionality of momentum

does not necessarily imply that momentum would be mispriced in a conditional setting when

controlling for recent risk factors. The high Sharpe ratios of momentum after low-risk (safe)

months could be due to low volatility in the factors driving the anomaly in the first place

or high expected returns in those factors or some combination of these. But our conditional

regression results are not supportive of this conjecture. The preview of the results is displayed

in Fig. 1.

Figure 1 Conditional Performance of Momentum. This figure depicts the unadjusted and factor-adjusted performance (i.e., estimated alphas with
confidence intervals) of the decile-spread momentum portfolio across three defined volatility states: High, Medium, and Low. The factor models
considered include: the market model (Sharpe 1964; Lintner 1965; Black 1972, CAPM), Fama-French 5-factor model (Fama and French 2015,

FF5), q-factor model (Hou, Xue, and Zhang 2015, q4), the 3-factor risk-and-behavioral model (Daniel, Hirshleifer, and Sun 2020, BF3), and the
FF5 model augmented with the (off-the-shelf) factor momentum strategy of Ehsani and Linnainmaa (2022, EL6). The sample period is 1972:07 to
2022:12. Volatility states are defined based on the lagged realized volatility of momentum, using the 30%-30% cutoff points.

Consistent with prior literature, momentum has strong conditionality. Fig. 1 shows that

momentum profits concentrate in low-volatility months (2.47% vs 0.51% and 0.25% for other

months), i.e., 73% of momentum profits occur in less than a third of the 1972:07–2022:12
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sample.5 In other months, momentum is a dismal strategy with insignificant returns.

More importantly, in non-low-volatility months, momentum returns can be subsumed not

only by factor models that can span momentum unconditionally, including those based on

q-factors, behavioral factors, and factor momentum, but also by conventional factor models

such as CAPM (Sharpe 1964; Lintner 1965; Black 1972), and Fama and French (2015) 5-

factor model. However, in low-volatility months, no models can span momentum.

An alternative test of those models’ explanatory power for momentum’s conditionality

uses managed payoffs as recommended in Cochrane (2009, Ch. 8). We define four forms

of managed momentum payoffs as functions of lagged realized volatility in momentum (i.e.,

investing more in the strategy when its lagged realized volatility is low). Testing the four

managed momentum portfolios against three factor models results in twelve alpha estimates.

Eleven of them are statistically significant at the 1% level, and the one left is still significant

at the 5% level. So, consistent with conditional regression results, none of the factor models

explains the conditionality of momentum.

Notably, both tests come to a consensus that all compared factor models fail to explain

momentum returns in a conditional setting. From the conditionality tests, the specification

that comes closer in terms of the magnitude of the t-statistic for regression alpha—which

is proportional to information ratio of the test asset relative to the (ex-post) optimal com-

bination of the underlying factors—is underreaction with the model of Daniel, Hirshleifer,

and Sun (2020), but even this one fails to capture the returns of momentum after low-risk

(safe) months and to span managed momentum payoffs. So, momentum has a conditionality

beyond that of the factors.

Both forms of conditional spanning regressions are arguably only indirect tests of the

economic mechanisms proposed in the literature. To account for this, we go beyond spanning

tests and perform more direct tests of the explanations and their economic mechanisms.

Below we briefly describe our main results for each core explanation.

Investment CAPM. According to the investment CAPM, expected profitability and

expected investment growth are the relevant drivers of expected returns explaining momen-

tum. Earnings-surprise factors in other models could capture something other than underre-

action. They may capture the economic fundamentals of the investment CAPM. Supporting

this interpretation, Liu, Whited, and Zhang (2009) show that innovations in earnings corre-

5This is computed as 2.47∗0.3
2.47∗0.3+0.51∗0.4+0.25∗0.3 ≈ 73%.
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late positively with future investment growth. If this positive relation is stronger after safe

months, then the pattern of predictability we find would be as expected according to the

investment CAPM. To assess that possibility, we follow George, Hwang, and Li (2018) and

directly examine how past returns are linked with future profitability and investment growth

using Fama and MacBeth (1973, Fama-MacBeth) predictive regressions. This shows that

past stock performance conveys roughly the same information about the firm’s investment

opportunity set in safe and risky months. But its correlation with expected returns increases

significantly in safe states. As a result, firms’ expected investment growth and profitability

do not speak to the observed conditionality of momentum.

Factor Momentum. We first note that, unlike stock momentum, factor momentum

does not exhibit conditionality on lagged volatility. Therefore, we assess if stock momentum’s

conditionality emanates from a time-varying association with factor momentum. But a

conditional spanning regression analysis shows that stock momentum does not load more on

factor momentum after low volatility periods. In fact, stock momentum tends to perform

better when it is less correlated with factor momentum. On top of this, the predictive power

of stock momentum volatility for returns does not disappear once controlling for factor

momentum. So, factor momentum is an unlikely cause of momentum’s conditionality.

Underreaction. Given the relative success of the model of Daniel, Hirshleifer, and Sun

(2020) in our tests, we check if more direct proxies for underreaction match the observed

time-variation in expected profitability of momentum. We build on studies using quarterly

announcement returns to proxy for corrections in investor expectations (Jegadeesh and Tit-

man 1993; La Porta 1996; La Porta, Lakonishok, Shleifer, and Vishny 1997) and find that,

consistent with an underreaction channel, price signals become better predictors of subse-

quent earnings announcement date returns when momentum volatility is low. In an even

more direct test of the underreaction hypothesis, we follow Hribar and McInnis (2012) and

Antoniou, Doukas, and Subrahmanyam (2016), and study the magnitude of analyst forecast

errors close to earnings announcements. This shows analysts become more optimistic than

normal about loser stocks after low-volatility months, further confirming the underreaction

channel.

Finally, a valid concern about conditional momentum is that is can be practically irrel-

evant due to excessive turnover and trading costs (Barroso and Detzel 2021). This concern

is further justified as plain momentum is already costly to start with (Lesmond, Schill, and

6



Zhou 2004; Novy-Marx and Velikov 2016). But we show this concern can be turned on its

head: momentum is costly to trade all the time while it is only (predictably) profitable in

times of low volatility. So, we suggest simply not investing in the strategy when volatility

is high. This, coupled with other cost mitigation approaches, saves much on costs and the

resulting managed strategy overcomes reasonable transaction cost estimates by a substantial

margin. The resulting best performing variant of such strategy can earn a net-of-cost Sharpe

ratio of 0.80.

For robustness, we use the Down-market state variable proposed by Cooper, Gutier-

rez Jr., and Hameed (2004) as it was the first proposed predictor of momentum. Generally,

conditionality also holds with market state variables.

Our results shed light on unresolved questions in the literature. For example, previous

work on the performance of momentum conditional on its volatility relies centrally on statis-

tical arguments such as the AR(1) nature of volatility (e.g., Barroso and Santa-Clara 2015;

Moreira and Muir 2017). This does not explain though why volatility timing is much more

effective for momentum than for other factors (see, for example, Moreira and Muir 2017;

Cederburg, O’Doherty, Wang, and Yan 2020). All in all, our evidence on earnings announce-

ment returns, analyst forecast errors, and conditional spanning regressions is supportive of

volatility of momentum capturing time variation in underreaction in financial markets.

The starting point of our inquiry is that momentum’s realized volatility is an unusually

strong predictor of the anomaly and little is known before on why this holds. Our end result

is that this strength is strongly linked to proxies of underreaction and not to other theo-

ries of momentum. Some explanations for underreaction would suggest this link all along.

First, in the version of the model of Hong and Stein (1999) with only news watchers, a more

gradual information diffusion should result in lower volatility as stocks would react less to

fundamental shocks and, simultaneously, become more autocorrelated. Hirshleifer and Teoh

(2003)’s model should also imply more underreaction and less volatility as limited attention

increases. So, our results are broadly consistent with seminal theories of underreaction. Sec-

ond, volatility can also capture time variation in the prevalence of sentiment-driven investors

that are likely to underreact as argued in Antoniou, Doukas, and Subrahmanyam (2016).

Our work is particularly close to two papers contemporaneous with ours. Goyal, Je-

gadeesh, and Subrahmanyam (2025) test several theories of momentum in an international

setting and also conclude that underreaction is the main cause. But they focus on different
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constructions of momentum in the cross section. By contrast, our results use time series

predictors of the effectiveness of conventional momentum. Barroso, Detzel, and Maio (2025)

recently adopt a similar time series approach to compare explanations for the beta anomaly

conditional on volatility. Our work is on the momentum anomaly though, the one where the

benefits of volatility timing most stand out and so the main mystery of volatility management

strategies.

The remainder of our paper is structured as follows: Section 2 summarizes the literature

related to our study, Section 3 presents the empirical results, and Section 4 concludes.

2 Related Literature

Our study is related to the literature on conditionality of momentum. Apart from low mo-

mentum risk states (Barroso and Santa-Clara 2015; Daniel and Moskowitz 2016), momentum

has also been shown to be more profitable in up-market states (Cooper, Gutierrez Jr., and

Hameed 2004), small-(cross-sectional)-return-dispersion states (Stivers and Sun 2010), high-

sentiment states (Antoniou, Doukas, and Subrahmanyam 2013), low-market-volatility states

(Wang and Xu 2015), liquid-market states (Avramov, Cheng, and Hameed 2016), and small-

momentum-gap states (Huang 2022). Relative to this literature we show that recent factor

models fail to capture the conditionality of momentum on its own volatility and provide a

deeper examination into leading explanations for momentum.

Our work relates to the literature on explanations for momentum, such as underreaction,

investment CAPM, and factor momentum. Jegadeesh and Titman (1993) discover momen-

tum in U.S. equities and first consider investor underreaction to firm-specific information as

its possible cause. Since then multiple studies argue that underreaction of stock prices to

changes or trends in firm fundamentals drives momentum (Novy-Marx 2015a; Huang, Zhang,

and Zhou 2019; Daniel, Hirshleifer, and Sun 2020; DeMiguel, Mart́ın-Utrera, Nogales, and

Uppal 2020; Lim, Sotes-Paladino, Wang, and Yao 2024).6

As for the investment CAPM literature, Hou, Xue, and Zhang (2015) show that the q-

6In a recent comprehensive exercise, Guo, Li, and Li (2022) compare a large number of explanations and
find that underreaction to firm fundamentals is the single most promising explanation for momentum though
a large portion of the anomaly is still left unexplained. Additionally, multiple theoretical models feature
investors with limited attention underreacting to new information (Hirshleifer and Teoh 2003; DellaVigna
and Pollet 2009; Hirshleifer, Lim, and Teoh 2011).
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factor model derived from the investment CAPM captures momentum through a profitability

factor sorted on firm’s Return on Equity. This builds on Liu and Zhang (2014) who estimate

the investment model structurally and document that past stock performance signals firms

expected profitability and expected investment growth. Intuitively, a firm with strong (poor)

past performance is more likely to have experienced positive (negative) productivity shocks

and is also expected to be more (less) profitable in the future. Holding the level of investments

constant, the NPV rule implies that, at the margin, high firm profitability must be offset by

high cost of capital. Our study examines the compatibility of momentum’s conditionality

with the investment CAPM.

Our paper is also related to the recent studies on factor momentum. Ehsani and Lin-

nainmaa (2022) document that (time-series) momentum in either 20 commonly used fac-

tors (labeled “off-the-shelf” in their paper) or high-eigenvalue principal component factors

can subsume not only the conventional stock momentum of Jegadeesh and Titman (1993)

but also alternative forms of stock momentum. In this study, we further investigate how

time-series momentum in the off-the-shelf factors is associated with conditionality of stock

momentum. Specifically, we examine whether time-varying profits of momentum stem from

a similar conditionality of factor momentum or from a time-varying association with factor

momentum.

Our work contributes to understanding the driver of another puzzling relative-strength

anomaly: the 52-week high strategy of George and Hwang (2004). Similar to the conventional

momentum strategy, the profits of the 52-week high strategy have been attributed to both

underreaction-related behavioral biases (George and Hwang 2004; Li and Yu 2012) and

association with q-factors including expected profitability and expected investment growth

(George, Hwang, and Li 2018). We document that, in line with the patterns of analyst

forecast errors sorted by the momentum signal, analysts are excessively optimistic about

stocks whose prices are farthest from their 52-week highs and their excessive optimism are

more pronounced when volatility is low.

Finally, by examining conditional asset pricing models, our work is also related to Avramov

and Chordia (2006) who allow betas and risk premiums to vary as functions of state variables

which hence characterize conditionality in the investment opportunity set. An important dis-

tinction though is that in Avramov and Chordia (2006) the predictability of characteristics

for risk-adjusted returns is still assumed constant. The literature on momentum questions
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the validity of that assumption, and our empirical tests account for this source of condition-

ality.

3 Empirical Results

3.1 Data

We obtain U.S. stock market data from the Center for Research in Security Prices (CRSP)

and accounting information from the Compustat Annual and Quarterly Fundamental Files.

We adjust CRSP returns for delisting events following Hou, Xue, and Zhang (2020) whose

procedure is adapted from that of Beaver, McNichols, and Price (2007). Analysts’ fore-

casts for firms’ quarterly earnings per share (EPS) are extracted from Institutional Brokers’

Estimate System (I/B/E/S).

The sample period runs from July 1972 to December 2022.7 Our sample selection follows

standard practices in the asset pricing literature, particularly in the seminal replication study

by Hou, Xue, and Zhang (2020). Specifically, our sample includes all common U.S. stocks

(a CRSP share code of 10 or 11) listed on NYSE, AMEX or NASDAQ (a CRSP exchange

code of 1, 2 or 3). We exclude financial firms with Standard Industrial Classification (SIC)

codes between 6000 and 6999 and firms with negative book equity.8

The primary portfolio we examine is the decile-spread momentum portfolio (denoted as

WML), whose return is calculated as the value-weighted return of the “Winners” decile minus

the value-weighted return of the “Losers” decile. Daily and monthly returns of individual

decile portfolios are obtained from the q-data library of Hou, Xue, and Zhang (2020).

Specifically, the momentum portfolio is formed on stocks’ prior 11-month return from

month t − 12 to t − 2 (denoted as r2,12), which is also the primary stock-level variable in

our empirical analysis. Only stocks with complete 11-month return history are considered.

Note that month t− 1 is skipped to avoid the impact of short-term reversal documented in

Jegadeesh (1990).At the end of each month t−1, stocks are sorted into deciles based on r2,12

using NYSE breakpoints. For each decile, a value-weighted portfolio is formed, with market

7The starting date is restricted by the availability of quarterly earnings announcement dates (Compustat
item RDQ).

8These sample filters are also used in other asset pricing studies (e.g., Fama and French 2008; Hou, Xue,
and Zhang 2015, 2020; Daniel, Hirshleifer, and Sun 2020; Hou, Mo, Xue, and Zhang 2021).
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value at the end of month t−1 as weights; the portfolio is rebalanced monthly (i.e., one-month

holding period). Daily value-weighted returns for each decile within month t are calculated

using the market equity at the end of the previous trading day as weights. The monthly

returns on portfolios for Fama and French (1993)’s 3-factor model and Fama and French

(2015)’s 5-factor model are sourced from Kenneth French’s Data Library, which provides

the market (MKT), size (SMB), value (HML), investment (CMA), and profitability (RMW)

factors. The monthly returns on portfolios for Hou, Xue, and Zhang (2015)’s q-factor model,

which consists of the market (MKT), size (ME), investment (IA), and profitability (ROE)

factors, are obtained from the q-data library. The monthly returns on Daniel, Hirshleifer, and

Sun (2020)’s short- and long-horizon behavioral factors (PEAD and FIN factors), and Ehsani

and Linnainmaa (2022)’s (off-the-shelf) factor momentum portfolio (FMOM), are obtained

from the authors’ respective websites. Details of other stock characteristics and portfolios

used in our empirical analysis are provided in Section IA1 of the Internet Appendix.

3.2 Definition of Momentum Volatility States

The primary predictor of momentum returns we consider is the realized volatility of mo-

mentum (Barroso and Santa-Clara 2015, RV). At the end of each portfolio formation month

(t− 1), we compute the realized volatility of WML, σ̂
WML,t−1

, using daily momentum returns

over the previous 126 trading days, which is given by

σ̂
WML,t−1

=

(
21

125∑
j=0

r2
WML,dt−1−j

126

) 1
2

, (3.1)

where rwml,d denotes a daily WML return and dt−1 denotes the last trading day of month

t− 1.

We split the sample period into three volatility states using the 30%-30% cutoff points

for σ̂
WML,t−1

.9 The volatility states are determined by classifying a formation period ending

in month t− 1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂
WML,t−1

belongs

in the top 30%, the middle 40%, or the bottom 30%, respectively. Therefore, in our study,

the classification of period t as a safe or low-volatility month (or state), consistently uses a

9Antoniou, Doukas, and Subrahmanyam (2013) and Asness, Frazzini, and Pedersen (2019) use the same
cutoff points to define states of market sentiment and market volatility.
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variable known in real time (at t− 1).

3.3 Conditional Performance of Momentum

In this section, we examine the unadjusted and factor-adjusted conditional performance

of momentum. We consider five prominent factor models in the literature including the

market model (Sharpe 1964; Lintner 1965; Black 1972, CAPM), Fama-French 5-factor model

(Fama and French 2015, FF5), q-factor model (Hou, Xue, and Zhang 2015, q4), the risk-

and-behavioral 3-factor model (Daniel, Hirshleifer, and Sun 2020, BF3), and the FF5 model

augmented with the (off-the-shelf) factor momentum strategy of Ehsani and Linnainmaa

(2022, EL6).

The q4, BF3, and EL6 models have been shown to subsume momentum unconditionally by

Hou, Xue, and Zhang (2015), Daniel, Hirshleifer, and Sun (2020) and Ehsani and Linnainmaa

(2022), respectively.10

In Section 3.3.1, we employ a conditional regression specification, allowing alphas and

factor loadings of momentum to vary across volatility states of momentum to investigate

the conditionality of momentum. In Section 3.3.2, we examine the performance of four

conditional momentum strategies contingent on the volatility states of momentum using

an unconditional regression model, where alphas and factor loadings are time-invariant. In

Section 3.3.3, we use an out-of-sample setting to demonstrate how investors can benefit

from exploiting the conditionality of momentum after accounting for the transaction costs

of individual stocks.

3.3.1 Conditional Regressions

[Insert Table 1 near here]

10Admittedly, the claim that these models subsume momentum even unconditionally is not without con-
troversy. Novy-Marx (2015b) casts doubt on the interpretation of the q-factor result while several papers
question the robustness of factor momentum (Fan, Li, Liao, and Liu 2022; Cakici, Fieberg, Metko, and
Zaremba 2025). Still, these explanations are there in the literature, their economic mechanisms have not
been dismissed and we confirm they span momentum in straightforward unconditional tests following the
original papers. Besides, as the conditional asset pricing literature points out, dismissing a model in uncon-
ditional tests is not enough: the model can still hold conditionally (see, for example, Lewellen and Nagel
2006; Cochrane 2009).

12



The column labeled “Unc.” in Table 1 summarizes unconditional returns and alphas of

WML over the period of July 1972 to December 2022 (see Table A1 in the Appendix for full

regression results). Consistent with the prior literature, WML can produce a statistically

significant average monthly return of 1.02% over the sample period (t-statistic = 3.38);

the CAPM and FF5 models fail to explain it with significant regression alphas at the 1%

level. Not surprisingly, FF5 has limited explanatory power for momentum as the model is

primarily designed to capture the long-term stock anomalies (Daniel, Hirshleifer, and Sun

2020). Additionally, WML’s return is even higher after adjusting for its exposure to the

market factor (CAPM-alpha = 1.21%) or the FF5 factors (FF5-alpha = 1.24%). In line

with the findings shown in the corresponding papers, the q4, BF3 and EL6 models can all

subsume momentum unconditionally. Table A1 in the Appendix indicates that WML heavily

loads on the three previously proposed momentum drivers: 1) the profitability (ROE) factor

under the investment CAPM (t-statistic = 7.37); 2) the short-run earnings-surprise (PEAD)

factor (t-statistic = 6.71), which is motivated by inattention-driven investor underreaction;

and 3) the momentum in factor returns (FMOM) with a t-statistic of 12.99. The EL6 model

achieves the highest R2
adj of 49%. In terms of the absolute value of t-statistic associated with

regression alpha (|α̂|), BF3 performs the best in capturing WML.

The following three columns of Table 1 present raw (excess) returns, alphas and Sharpe

ratios earned by WML in different volatility states. We employ the following specification

to estimate the alphas of WML in each volatility state:

WMLt = αs0 + αs1Is1,t−1 + αs2Is2,t−1 +
K∑
k=1

(βk,s0 + βk,s1Is1,t−1 + βk,s2Is2,t−1)fk,t + ϵt, (3.2)

where s0 denotes the underlying state, s1 and s2 denote the remaining two states, Is1,t−1

(Is2,t−1 ) is an indicator for state s1 (state s2), and fk,t represents returns on factor k in

month t. This specification is a standard conditional test that can be seen as a special

case of Shanken (1990)’s conditional models, one in which the lagged instruments consist of

dummy variables (see Barroso, Detzel, and Maio 2025, for example). Notably, the reported

alphas can be conventionally interpreted as risk-adjusted returns even if volatility is not a

traded factor. This is so since lagged volatility is used and therefore its interaction with any

contemporaneous traded factors is still a tradeable dynamic strategy (Cochrane 2009).

“High”, “Medium”, and “Low” columns provide the values of the estimated alpha (α̂s0)
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and Sharpe ratio when the underlying volatility state is High-RV, Medium-RV, and Low-

RV, respectively. The estimated factor loadings (β̂s0) in each volatility state are reported

in Panel A of Table A2 in the Appendix. The general pattern is that WML tends to be

stronger in safe states and weaker in risky sates. This pattern is immediately observable for

raw average returns. Over the 1972–2022 period, 73% (30%×2.47
1.02

) of WML profits occur in

less than a third of the sample, only in Low-RV months. In addition, over these safe periods,

WML attains an impressive Sharpe ratio of 2.02. So, the profits of WML concentrate in a

relatively small subsample. The natural converse of this statement is that in most of the

sample, the anomaly has little profitability.

Notably, all factor-adjusted returns are statistically indistinguishable from zero for the

WML portfolio held both in High-RV months and in Medium-RV months. The CAPM and

FF5 models, which cannot capture momentum unconditionally, can even span it in the two

states. In contrast, all factor-adjusted returns in Low-RV months are significantly posi-

tive, indicating that all models fail to explain the anomaly. Hence, the unconditional fit of

momentum with the q4, BF3, and EL6 models is somewhat misleading as that regression as-

sumes time-invariant alphas and factor loadings for a test asset with significant time-varying

payoffs. Notably, we should not expect factor models to explain anomalies all the time. But

this test shows that a simple variable known ex ante can pick in real time subsamples when

available factor models won’t price the anomaly. On top of it, those periods correspond to a

relatively small part of the sample and the one where the bulk of raw returns are produced

in the first place.

Specifically, WML in the Low-RV subsample yields positive factor-adjusted returns of

2.47%, 2.37%, 1.66%, 1.30%, and 1.28% relative to the CAPM, FF5, q4, BF3, and EL6

models, respectively, all of which are statistically significant at the 1% level. For this risk

regime, BF3 outperforms other models in explaining WML in terms of t-statistic of the

alpha, which is proportional to information ratio of WML relative to the (ex-post) mean-

variance optimal combination of underlying factors. This highlights the importance of the

earnings-surprise factor in explaining momentum. Still, no factor model seems able to fully

explain momentum returns when the strategy (predictably) works. The best models—BF3

and EL6—can account for almost half of momentum’s raw returns in safe periods. But

the remainder is economically meaningful, about 130 basis points (bps) per month, and

statistically significant.
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The “L − M&H” column of Table 1 presents the differences in alphas and Sharpe ratios

between the Low-RV subsample and the rest of the sample (i.e., High- and Medium-RV sub-

samples combined). The differences in alphas are estimated using the following specification:

WMLt = α0 + αLIL,t−1 +
K∑
k=1

(βk,0 + βk,LIL,t−1)fk,t + ϵt, (3.3)

where IL,t−1 denotes an indicator for the Low-RV state, α̂L corresponds to the estimated

difference in alphas, and α̂0 represents the estimated alphas in non-safe states (reported in

the “M&H” column). In addition, the differences in factor loadings (β̂k,L) are reported in

Panel B of Table A2 in the Appendix.

The results in the “L − M&H” column show that returns in safe periods are significantly

higher than in riskier periods with a t-statistic for the difference of 4.03. Remarkably, for

all models, the factor-adjusted returns of WML increase significantly in safe months with

t-statistics on the differences ranging from 2.73 to 3.62. The differences are also economically

important, from 145 bps to 178 bps. The best model capturing conditionality is EL6 that

explains about 30% (≈ 1 − 1.45/2.07) of the change in raw returns across states. Still,

most conditionality in raw returns, 70% to 86%, eludes even the best models subsuming

momentum in unconditional tests.

As for the difference in loadings on the three previously proposed drivers of momentum

(ROE, PEAD, and FMOM) reported in Panel B of Table A2 in the Appendix, WML shows

less exposure to all of them in safe states. In particular, WML is significantly less exposed

in those periods to the ROE factor, suggesting that both the success of the q-factor model

in capturing WML unconditionally and the co-movement of WML with the ROE factor are

driven by the normal and risky subsamples where WML does not generate any premium in

the fist place. So, stock momentum is a much stronger phenomenon in low volatility months

and none of the models in our study seem able to explain that.

The last row shows that the Sharpe ratio of momentum increases 25 fold from High- to

Low-volatility periods (0.08 versus 2.02).11 We use 100,000 bootstrap samples to compute the

associated two-sided p-value for the difference in Sharpe ratios between safe periods and the

11Notably, this compares with a five-fold increase in a similar test for the beta anomaly in ?. This showcases
that momentum’s conditionality on lagged volatility stands out relative to other leading equity factors (of
which betting-against-beta already is one of the strongest cases).
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rest and find this difference is significant at the 1% level. This pronounced conditionality of

the Sharpe ratio points to a possibly neglected limit of APT-like explanations for momentum

as those in the tested models. If M stands for the stochastic discount factor (SDF) pricing

all assets in the absence of arbitrage opportunities, then σt(Mt+1)/Et(Mt+1) is the maximum

Sharpe ratio in the market (see, e.g., Cochrane 2009, Ch. 1). Then, the conditional Sharpe

ratio of momentum should be:

SRt(WMLt+1) :=
Et(WMLt+1)

σt(WMLt+1)
=

σt(Mt+1)

Et(Mt+1)
× [−ρt(Mt+1,WMLt+1)] (3.4)

This implies that a higher Sharpe ratio for momentum in safe months should come

from either a higher Sharpe ratio for the aggregate economy or a stronger (more negative)

correlation with Mt+1. The first channel is counterintuitive since volatility shows a very

strong commonality across factors—volatile periods for momentum tend to be also volatile

periods for other factors and thus for likely SDFs. As Moreira and Muir (2017) point out,

rational risk-averse investors should require higher compensation for risk when risk is high,

making this an implausible channel for the conditionality of momentum. The second channel

is equally unlikely since momentum is generally less correlated with all relevant observable

risk factors when risk is low (see Table A2 in the Appendix). So, the anomaly would need to

significantly load on unknown factors in all tested models and also moreso when its risk is low.

Furthermore, as absolute correlations cannot be larger than one, the resulting SDF would

need to imply conditional Sharpe ratios in safe periods exceeding 2.02 which is the Sharpe

ratio of momentum. This largely exceeds 0.5, the estimated Sharpe ratio of the market

in Mehra and Prescott (1985) and considered a puzzle therein. Therefore, an hypothetical

APT-like model able to span momentum in safe months should also allow for Sharpe ratios

in the economy violating conventional “good deal” boundaries.12

3.3.2 Conditional Momentum Strategies

To further demonstrate the conditionality of momentum profits, we next examine how well

the newly proposed factor models explain momentum payoffs contingent on volatility states

12A Sharpe ratio about twice that of the market is often considered as a rough approximation of a “good
deal” boundary above which an anomaly starts to look more like an arbitrage opportunity (Ross 1976;
Shanken 1992; Cochrane and Saa-Requejo 2000). MacKinlay (1995) considers a more conservative value of
0.6 already implausible for anomaly portfolios.
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using unconditional regressions. We heed the advice in Cochrane (2009) and characterize

conditionality through managed portfolios that change their exposure dynamically as a func-

tion of lagged instruments—which is the realized volatility of momentum in our study. We

consider the following four risk-managed momentum strategies based on σ̂
WML,t−1

:

• Strategy (1): holds only the risk-free asset, except in Low-RV months when it im-

plements the momentum strategy. The excess returns in Low-RV, Medium-RV, and

High-RV months are respectively the WML returns, zero, and zero;

• Strategy (2): holds the market portfolio, except in Low-RV months when it switches

to the momentum strategy. The excess returns in Low-RV, Medium-RV, and High-RV

months are respectively the WML returns, the market excess returns, and the market

excess returns.

• Strategy (3): implements the momentum strategy in Low-RV months, holds the risk-

free asset in Medium-RV months, and implements the reverse momentum strategy (i.e.,

losers-minus-winners) in High-RV months. The excess returns in Low-RV, Medium-RV,

and High-RV months are respectively the WML returns, zero, and the WML returns

multiplied by −1.

• Strategy (4): It is the risk-managed momentum strategy proposed by Barroso and

Santa-Clara (2015). The monthly excess return is defined as 12%
σ̂
WML,t−1

×
√
12

× WMLt,

where the numerator corresponds to the target level of (annualized) volatility.

Table 2 presents unadjusted returns, factor-adjusted returns and Sharpe ratios of the four

strategies.13 All of them can produce statistically significant returns at the 5% level ranging

from 0.67% earned by Strategy (3) to 1.24% earned by Strategy (4). After accounting for

risk, Strategies (1), (2), and (4) can achieve impressive Sharpe ratios of 1.00, 0.91, and 0.88,

whereas Strategy (3) delivers a more modest Sharpe ratio of 0.35 but it is designed to reflect

more conditionality of momentum relative to factor models than in this metric.

For the abnormal returns relative to the three models that can subsume WML uncon-

ditionally, eleven out of the twelve alphas are statistically significant at the 1% level, and

the remaining one is significant at the 5% level with a t-statistic of 2.54. In line with the

13The full regression results are available in Table IA1 of the Internet Appendix.
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conditional regression results above, the BF3 model outperforms the q4 and EL6 models in

terms of t-statistic of alpha across all four strategies.14 As for the two models that cannot

span unmanaged momentum, both generally fail to capture the managed momentum as well.

Overall, the evidence presented in Table 1 and Table 2 jointly suggests that all models,

including those capable of spanning momentum unconditionally, fail to capture the condi-

tionality of the anomaly. The underreaction channel in BF3 generally produces the best fit,

but it still leaves most conditionality of momentum unexplained.

3.3.3 Investment Implications of Momentum’s Conditionality

A known problem of volatility managed strategies is that they imply too much turnover

and tend to perform poorly after costs (Barroso and Detzel 2021). This leads to the ques-

tion of whether investors could benefit from conditioning their exposure to momentum on

its lagged realized volatility. In this section, we showcase how investors can benefit from

the conditionality of momentum after transaction costs. For this we propose a minimalist

dynamic strategy exploiting conditionality in momentum. More complex approaches might

yield better results but this would imply shifting our focus to implementation, which is not

the main research question of our study.

At the end of each formation month (t−1), investors in our minimalist dynamic strategy

implement the (zero-cost) momentum strategy only when the volatility state is low; otherwise

they hold the risk-free asset. To ensure this investment strategy is implementable, the

volatility state is defined using an expanding look-back window starting from 1927:06 to

determine whether σ̂
WML,t−1

in a certain formation month is below 30% of the expanding

sample.15

We examine the performance of this conditional momentum strategy with holding periods

of 1 month, 3 months and 6 months, which are denoted as “Cond1”, “Cond3”, and “Cond6”,

respectively. The stock weights under a conditional strategy at the end of a formation month

14On top of this, in Section IA2.1 of the Internet Appendix, based on the specification proposed in Shanken
(1990), we directly employ σ̂WML,t−1 as a continuous variable to test the conditionality of WML. Again, BF3
performs better than q4 and EL6 in capturing time-varying profits of momentum, with a notable t-statistic
of −1.89 for the coefficient measuring the response of returns to one-standard-deviation increase in lagged
log(σ̂

WML,t−1
).

15For WML portfolios between Jan 1927 and Dec 1966, whose daily returns are not available on the q-data
library, we construct them along the lines of Hou, Xue, and Zhang (2020)’s methodology (see Section IA1.1
of the Internet Appendix).

18



(t− 1) can be expressed as:

wi,t−1 =
H∑

h=1

1

H
wmom,i,t−h × IL,t−h, (3.5)

where H ∈ {1, 3, 6} denotes the holding period, wmom,i,t−h denotes the weights of stock i in

the value-weighted decile-spread momentum portfolio formed in month t − h, and IL,t−h is

an indicator for the Low-RV state for formation month t − h. Note that in the absence of

IL,t−h, wi,t−1 corresponds to the weights of stock i in the (unconditional) H-month overlap-

ping momentum strategy. Since traders are assumed to invest 100% in the risk-free asset

(wrf,t−1 = 1) and the momentum portfolio is self-financed by design, the sum of asset weights

(including wrf,t−1) for a strategy at the end of month t − 1 after rebalancing always equals

one, that is, wrf,t−1 +
∑

i wi,t−1 = 1.

[Insert Figure 2 near here]

In Fig. 2, we compare the strategy’s performance in terms of before-cost and after-

cost Sharpe ratios against those of the standard unconditional momentum strategy (i.e.,

WML) and the unconditional momentum strategy executed with the “banding” technique,

a transaction-cost-mitigation approach recommended by Novy-Marx and Velikov (2019) for

common characteristic portfolios. We apply the 10%/20% rule for the “banding” strategy in

which traders go long (short) stocks with past returns in the top (bottom) decile and keep

them until they drop out of the top (bottom) quintile. We compute portfolio turnover (TO)

as:

TOt−1 =
1

2

∑
i

|wi,t−1 − w̃i,t−1|, (3.6)

where wi,t−1 denotes the weight of stock i at the end of month t − 1 after rebalancing and

w̃i,t−1 denotes the the weight of stock i at the end of month t − 1 just before rebalancing

(i.e., inertia weight), w̃i,t−1 =
wi,t−2ri,t−1

1+rrf,t−1+
∑

i wi,t−2ri,t−1
. Note that stocks leaving the portfolio

are also considered in the calculation of turnover. The net-of-cost return (rnet,t) is computed

as

rnet,t = rrf,t +
∑
i

wi,t−1ri,t −
∑
i

κi,t−1|wi,t−1 − w̃i,t−1|, (3.7)
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where κi,t−1 denotes one-way Hasbrouck (2009) trading costs of stock i at the end of month

t − 1. We follow Novy-Marx and Velikov (2016) to impute missing values for κi,t−1. When

κi,t−1 = 0, Eq. (3.7) becomes the formula for gross returns. The net-of-cost Sharpe ratio

(SR) is calculated as:

SRnet =
mean(rnet,t − rrf,t)

std(rnet,t − rrf,t)
(3.8)

The turnover of WML is 72.94% per month on average, eroding gross returns by 64 bps. So,

the Sharpe ratio drops from 0.47 to 0.17 after accounting for trading costs. As a result, the

standard momentum portfolio is relatively expensive to trade (Lesmond, Schill, and Zhou

2004; Novy-Marx and Velikov 2016). By using the “banding” technique, the turnover and

trading costs reduce by about 30 percentage points (from 72.94% to 42.17%) and 28 bps

(from 64 bps to 36bps), respectively. The cost-mitigated portfolio has a net-of-cost SR of

0.30.

The gross SR of momentum can be significantly improved by implementing the momen-

tum strategy contingent on volatility states. The before-cost SRs of the three proposed

conditional strategies are 0.90, 0.96, and 0.89. As expected, the turnover of the conditional

strategy is negatively correlated with the implementation period. Economically, the best-

performing strategy is the 3-month conditional momentum in terms of not only before-cost

SR but also after-cost SR (0.80). The 1-month and 6-month strategies deliver slightly lower

net SRs of 0.62 and 0.77, respectively. All show robust improvements in after-cost profitabil-

ity.

In sum, momentum is a costly strategy to implement and moreso in volatile times. But

our conditional tests show this costly signal to trade on is also virtually irrelevant, even before

costs, in about 70% of the sample (non-safe periods). Therefore, exploiting the conditionality

of momentum does not necessarily imply more trading. In fact, conditionality can be used

instead to reduce turnover and trading costs, canceling superfluous trades, and thus improve

after-cost profitability.

3.4 Direct Tests of Three Economic Mechanisms

The core set of explanations in our study rely on considerably different economic mecha-

nisms. These have little in common beyond motivating empirical specifications that all span

momentum in unconditional tests. Here, we go beyond conditional spanning tests and take
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a closer look at the underlying three economic mechanisms: 1) Investment CAPM, 2) Factor

Momentum, and 3) Underreaction.

Conditional tests have the merit of incorporating predictability into the setting, but it

could also be argued that they are only indirect tests of the momentum drivers proposed in

the literature. Indeed, the interpretation of those tests is predicated on the notion that risk

factors derive their premiums from the explanations proposed for their existence, which is

not necessarily true.

For instance, even in unconditional tests, there is an unsettled debate about whether

the profitability factor truly captures what it is intended to measure. Novy-Marx (2015b)

decomposes the ROE factor of q4 into a low frequency earnings profitability factor and a

post-earnings announcement drift factor, and posits that q4 subsumes momentum through

the earnings-surprise channel, not due to firm profitability per se. Based on this finding,

Novy-Marx (2015a) further introduces an ad hoc factor model augmenting the Fama and

French (1993) 3-factor model with two earnings-surprise factors and finds that momentum

is fully captured by momentum in firm fundamentals. In addition to the factor based on

cumulative abnormal returns around the most recent quarterly earnings announcement—the

underlying variable used by Daniel, Hirshleifer, and Sun (2020) to construct the PEAD factor

as well—he includes a factor formed on standardized unexpected quarterly earnings (sue).

Taken together, these results suggest the ROE factor may capture the same underreaction

phenomenon as PEAD in BF3. On the other hand, Liu, Whited, and Zhang (2009) show

that future firm investment growth and future firm profitability are positively correlated

with recent earnings surprises of firms. Hence, it could also be argued that the relative

success of the BF3 model in explaining momentum conditionally can be driven through the

investment CAPM channel rather than the underreaction channel. In sum, the investment

CAPM profitability factor could instead proxy for underreaction while earnings surprise

factors—supposed to capture underreaction—can in turn recover their explanatory power

from investment CAPM fundamentals.

Given the ambiguous interpretation of the results on the earnings-surprise factor, we

design a set of hopefully more incisive tests of the three mechanisms and their implications

for conditionality. For the investment CAPM, we follow George, Hwang, and Li (2018) and

directly examine the dynamics of the relation between past returns and both future firm

profitability and investment growth using cross-sectional Fama-MacBeth regressions. For
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factor momentum, we first examine whether the FMOM factor itself exhibits any time varia-

tions in profits using its own lagged realized volatility. After that, we investigate whether the

conditionality of stock momentum stems from its time-varying association with factor mo-

mentum. For investor underreaction, we perform two tests: i) cross-sectional Fama-MacBeth

regressions to investigate how past returns are associated with cumulative returns around

the upcoming quarterly earnings announcement; and ii) directly examine conditionality in

earnings forecast errors of analysts.

3.4.1 Fama-MacBeth Regressions

To mitigate the biases resulting from overweighting microcaps, we follow recent studies

(e.g., George, Hwang, and Li 2018; Hou, Xue, and Zhang 2020; Harvey and Liu 2021) and

implement cross-sectional Fama-MacBeth regressions using weighted-least-squares (WLS)

with market equity in month t−1 as weights and ordinary-least-squares (OLS) for non-micro-

cap stocks (i.e., those with market capitalization exceeding the 20th percentile threshold of

NYSE stocks). Specifically, for each month (t), we run a cross-sectional regression using the

following specification

√
wi,t−1y

k
i,t = b0,kt

√
wi,t−1 +

∑
j

bj,kt
√
wi,t−1c

j
i,t−1 + ϵki,t, (3.9)

where yki,t denotes dependent variable k in month t (e.g., future returns, future investment

growth, or future profitability) for stock i, and cji,t−1 denotes characteristic variable j such as

r2,12 computed at the end of month t− 1 (i.e., portfolio formation month) for stock i. wi,t−1

represents weight of stock i in a cross-sectional regression. When performing cross-sectional

WLS regressions, we set wi,t−1 proportional to market cap of stock i at the end of month

t − 1. When performing cross-sectional OLS regressions, we set wi,t−1 to one. The main

independent variable we consider is the sorting characteristic of WML (i.e., r2,12).

In the second stage, we run a time-series regression of monthly estimated coefficients on

characteristic j onto the intercept term only to get an unconditional coefficient estimate. To

get the estimated coefficient on characteristic j in each volatility state, we run the following

time-series regression:

b̂j,kt = aj,ks0 + aj,ks1 Is1,t−1 + aj,ks2 Is2,t−1 + uj,k
t , (3.10)
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where s0 denotes the underlying state, s1 and s2 denote the remaining two states, Is1,t−1

(Is2,t−1 ) is an indicator for state s1 (state s2). For example, when the underlying state,

s0, is High-RV, âj,ks0 is the estimated coefficient of dependent variable k on characteristic j

in the High-RV subsample. To test the difference in coefficient estimates between the Low-

RV subsample and the rest of the sample, the specification of the second-stage regression

becomes

b̂j,kt = aj,k0 + aj,kL IL,t−1 + uj,k
t , (3.11)

where IL,t−1 is an indicator for the Low-RV state, and âj,kL reflects the difference in coefficients

of stock characteristic j on the outcome variable k between the Low-RV subsample and the

rest of the sample.

To account for heteroskedasticity and autocorrelation in the error terms, standard er-

rors of the coefficient estimates are computed using the method proposed by Newey and

West (1987), with the number of lags for computing standard errors following the selection

procedure introduced by Newey and West (1994).

3.4.2 Investment CAPM

Based on the q-theory of investment, Liu, Whited, and Zhang (2009) propose modeling

expected stock returns as16:

Et[r
S
i,t+1] = Et[r

I
i,t+1] =

κEt[
Yi,t+1

Ki,t+1
] + a

2
Et[(

Ii,t+1

Ki,t+1
)2]

1 + a(
Ii,t
Ki,t

)
+

(1− δi,t+1)
(
1 + aEt[

Ii,t+1

Ki,t+1
]
)

1 + a(
Ii,t
Ki,t

)

= Expected dividend yield + Expected capital gain.

(3.12)

All firms are assumed to have a Cobb-Douglas production function with constant returns to

scale. In addition, we follow Hou et al. (2021) to assume that firms are in a multi-period world

without taxes and have no leverage. Under constant returns to scale, the investment return

(rIi,t+1) is equal to the stock return (rSi,t+1) if firm i has no leverage (Restoy and Rockinger

1994; Cochrane 1991). Et[
Yi,t+1

Ki,t+1
] is the expectation of future profitability; a

2
Et[(

Ii,t+1

Ki,t+1
)2] is the

expected marginal reduction in adjustment costs; 1 + a(
Ii,t
Ki,t

) is the marginal cost of current

16Liu, Whited, and Zhang (2009) use Ii,t, Ki,t, Yi,t, δi,t to respectively represent investment, capital, sales
and the depreciation rate of firm i at time t; κ and a represent capital’s share of output and an adjustment
cost parameter, respectively.
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investment.
κEt[

Yi,t+1
Ki,t+1

]+a
2
Et[(

Ii,t+1
Ki,t+1

)2]

1+a(
Ii,t
Ki,t

)
represents the expected “dividend yield” component of

the expected investment return.
(1−δi,t+1)(1+aEt[

Ii,t+1
Ki,t+1

])

1+a(
Ii,t
Ki,t

)
represents the expected “capital gain”

component of the expected investment return. (1 − δi,t+1)(1 + aEt[
Ii,t+1

Ki,t+1
]) is the marginal

continuation value of an additional unit of capital adjusted for depreciation. Cochrane (1991)

shows that this component is approximately proportional to the expected investment growth,

i.e.,
(1− δi,t+1)[1 + aEt[

Ii,t+1

Ki,t+1
]]

1 + a(
Ii,t
Ki,t

)
∝

Et[
Ii,t+1

Ki,t+1
]

Ii,t
Ki,t

. (3.13)

Hence, the model implies that, all else equal, firms should earn higher average stock re-

turns if they have low current investment, high expected investment growth, high expected

profitability (Liu, Whited, and Zhang 2009). More importantly, the return forecasting abil-

ity of some stock characteristics can be attributable to their associations with the three

determinants of stock returns.

Liu and Zhang (2014) use a structural estimation procedure to examine whether the

investment CAPM can explain the WML premium. They show that past returns are infor-

mative about future investment growth and future profitability of firms.

However, as discussed in Section 3.3.1 and Section 3.3.2, the time-varying behavior of

WML cannot be fully captured by the q-factor model derived from the static investment

CAPM. Hou, Xue, and Zhang (2015) use the most recent quarterly roe to proxy for expected

profitability and Hou et al. (2021) further use a linear combination of the most recent Tobin’s

q, operating cash flow, and change in quarterly roe as a forecast for investment growth.

This raises the issue of a potential bias due to inefficient proxies. Additionally, both proxy

variables contain an earnings-surprise component, i.e., the change in roe.

In this section, we use cross-sectional Fama-MacBeth regressions to directly examine

whether the relations between the momentum signal and the expected profitability or ex-

pected investment growth change with the risk of momentum.17 If the investment CAPM can

explain the anomaly conditionally, we should expect stronger positive relations between past

stock performance and future profitability and/or future investment growth in safe months.

17Similar exercises are implemented by Antoniou, Doukas, and Subrahmanyam (2016) who study whether
the relation between beta and future returns changes with investor sentiment (see their Table 8).
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Additionally, r2,12 is expected to be unassociated with the two determinants of the expected

return when momentum cannot produce any premium.

Following George, Hwang, and Li (2018), we measure future profitability using the forth-

coming annual roe (FROE), which is the ratio of income before extraordinary items over

one-year-lagged book equity. We follow prior studies (e.g., Liu, Whited, and Zhang 2009;

Liu and Zhang 2014; George, Hwang, and Li 2018) to measure future investment growth as

(forthcoming) growth in the annual investment-to-capital ratio (FIG), which is given by

FIGi,fy+1 = log

(
1 +

Ii,fy+1

Ki,fy+1

1 +
Ii,fy
Ki,fy

)
, (3.14)

where Ii,fy is measured by capital expenditures (Compustat item CAPX) minus sales of

property, plant, and equipment (Compustat item SPPE, set to zero if missing) over the

course of fiscal year fy for firm i, and Ki,fy is net property, plant and equipment (Compustat

item PPENT) at the beginning of fiscal year fy.18 The main reason why we do not directly

use (
Ii,fy+1

Ki,fy+1
)/(

Ii,fy
Ki,fy

) in Eq. (3.13) is that some firms that downsize in year fy and invest

in fy + 1 will be mistakenly assigned negative values. We follow George, Hwang, and Li

(2018) to fix the issue through adding both denominator and numerator by one to compute

an adjusted growth rate. We then take the natural log of the adjusted rate to make the

measure vary from negative to positive since
Ii,fy
Ki,fy

by definition is not smaller than −1.

We follow the methodology of Liu and Zhang (2014) and George, Hwang, and Li (2018)

to align annual measures with monthly stock returns (FRET) in time. Specifically, we match

the two annual measures from a fiscal year ending in month τ with the monthly stock returns

from τ−17 to τ−6. For instance, for a firm with fiscal years ending in December, its monthly

stock returns from July of calendar year cy to June of cy+1 are matched with FROE or FIG

of fiscal year cy + 1. Our sample includes momentum signals formed between 1972:06 and

2022:05, since for typical firms with fiscal years ending in December, the return in 2022:06 is

the last to be matched with FROE and FIG of fiscal year 2022. We follow George, Hwang,

and Li (2018) and winsorize all variables except for FRET at the 1% and 99% levels each

18Liu, Whited, and Zhang (2009) also use gross property, plant and equipment (Compustat item PPEGT)
to measure capital stock of a firm and use CAPX alone to measure firm investment. Liu and Zhang (2014)
and George, Hwang, and Li (2018) only use PPENT to measure capital stock of a firm and use (CAPX −
SPPE) to measure firm investment.
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month. In addition to the common sample selection criteria used in the formation of the

WML portfolio, we require stocks to have non-missing FRET, r2,12, FROE and FIG.

[Insert Table 3 near here]

Table 3 presents univariate Fama-MacBeth regression results regarding unconditional

and conditional relations between r2,12 and FRET, FROE, or FIG. Panel A presents results

based on WLS for all stocks, while Panel B presents results using OLS for non-micro-cap

stocks. We first discuss results presented in Panel A. Unsurprisingly, r2,12 has significant

positive predictive power for stock returns unconditionally with a t-statistic of 3.22. More

importantly, the momentum signal significantly positively predicts future profitability and

future investment growth with very large t-statistics of 9.47 and 10.47, which is consistent

with the findings of Liu and Zhang (2014).

The conditional (cross-sectional) regression results with respect to FRET presented in

Panel A confirm the time-varying payoffs to momentum observed at the portfolio level. That

is, the estimated coefficient on r2,12 monotonically decreases with momentum risk. The “L −
M&H” row further shows that the predictive power of r2,12 for returns is significantly higher

in safe states with a t-statistic of 3.03 on the difference in coefficient estimates between the

Low-RV subsample and the rest of the sample.

Yet, the conditional regression results with respect to FROE and FIG document that r2,12

significantly positively predicts future profitability and future investment growth regardless

of volatility states. More importantly, the “L − M&H” row indicates that the predictive

power of r2,12 for FIG and FROE does not decrease with momentum risk in a statistically

significant way. In other words, these time-invariant relations cannot match the time-varying

relations between the momentum signal and future returns. Particularly, when r2,12 is not

informative of future returns (i.e., during High-RV periods), it still significantly positively

predicts FIG and FROE with t-statistics of 5.62 and 4.90.

The OLS results presented in Panel B for the subsample without micro-cap stocks are

generally consistent with the WLS results: r2,12 is consistently informative about future firm

profitability and investment growth regardless of predicting stock returns or not. Besides,

our findings remain robust when using an alternative profitability measure, sales-to-lagged-

capital ratio, which is used by Liu, Whited, and Zhang (2009) and Liu and Zhang (2014)

(see Table IA3 in the Internet Appendix).
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Overall, the results shown in Table 3 contradict the implications of the investment CAPM

and suggest that the time-varying behavior of the momentum portfolio cannot be attributed

to manager’s optimal alignment of investment policies with the cost of capital. Conversely,

they also suggest possible managers deviations from optimal investment policy in times of

high volatility.

3.4.3 Correlation with Factor Momentum

We next examine whether factor momentum is the underlying driver of stock momentum. We

begin by investigating whether factor momentum exhibits conditionality on its own lagged

volatility. The realized volatility of factor momentum is calculated in the same way as that

of stock momentum, that is,

σ̂
FMOM,t−1

=

(
21

125∑
j=0

r2
FMOM,dt−1−j

126

) 1
2

, (3.15)

where r
FMOM,dt−1−j

represents daily FMOM returns. Note that whether a factor is gaining

momentum is still determined at the end of each month and that we use daily returns of

each underlying factor to compute r
FMOM,dt−1−j

.

First, we test if the risk of FMOM is predictable as that of WML. The AR(1) result of

σ̂
FMOM,t−1

for 6-month, non-overlapping periods is as follows:

σ̂
FMOM,t−1

= 0.0028
(4.09)

+ 0.63
(8.88)

× σ̂
FMOM,t−7

+ ϵt−1.

So, factor momentum risk is quite persistent with an AR(1) coefficient of 0.63 (t-statistic

= 8.88) similar to stock momentum risk that has well-known predictability (Barroso and

Santa-Clara 2015).

[Insert Table 4 near here]

Panel (A) of Table 4 presents FMOM returns in three volatility states and difference in

FMOM returns between the low-volatility subsample and the rest of the sample. We use the

same 30%-30% cutoff points to split the sample into three volatility states. The panel shows

that FMOM is profitable in a statistically significant manner regardless of volatility states
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and produces lower returns in low-volatility months than other months (0.29 vs 0.36) though

the difference is statistically insignificant. So we can conclude that factor momentum does

not feature conditionality like stock momentum.

Assuming a constant loading of WML on FMOM, its purported driver, the lack of con-

ditionality in FMOM is hard to reconcile with the strong conditionality of conventional mo-

mentum. A possible explanation to reconcile the two results is that WML might correlate

more with its driver when volatility is low. We next test if stock momentum’s conditionality

does emanate from a time-varying association with factor momentum. Yet, a conditional

spanning regression analysis uncovers that the loading of WML on FMOM in safe months

is smaller than that in other months with a difference of −0.89 and a t-statistic of −1.61

(see Panel B of Table A2 in the Appendix). This has the opposite signal to what would be

needed to explain conditionality. To further examine this, we compute the lagged correlation

between daily WML returns and daily FMOM returns (σ̂
FMOM,t−1

) over the same estimation

window as σ̂
WML,t−1

and σ̂
FMOM,t−1

. The AR (1) result of ρ̂{WML,FMOM},t−1
for 6-month, non-

overlapping periods is shown below

ρ̂{WML,FMOM},t−1
= 0.29

(6.02)
+ 0.31

(3.25)
× ρ̂{WML,FMOM},t−7

+ ϵt−1.

ρ̂{WML,FMOM},t−1
is somewhat persistent with a significant AR(1) coefficient of 0.31. Panel B of

Table 4 provides results on how this measure is related to momentum payoffs. Again, we use

the 30%-30% cutoff points to split the sample into three correlation states. Remarkably, in

the time series, profitability of stock momentum decreases with its correlation with FMOM.

The difference in WML returns between Low-correlation months and the remaining months

is 1.23% and significant at the 5% level.

In Panel C, we perform an independent double sorting of WML returns on lagged realized

volatility of WML and lagged correlation between WML and FMOM. If the time-varying

profits of stock momentum are indeed driven by its time-varying association with factor

momentum, we should not observe a positive return spread for WML between the Low-

RV subsample and the rest after accounting for its correlation with FMOM. The panel

shows that the forecasting power of stock momentum volatility for WML returns tends to

remain statistically significant after controlling for the correlations between the two forms of

momentum. In contrast, the negative relationship between WML returns and ρ̂{WML,FMOM},t−1
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no longer holds after accounting for stock momentum risk.

All in all, the evidence from these factor-momentum-related tests is not supportive of the

mechanism that stock momentum results from momentum in factors.

3.4.4 Investor Underreaction

In this section, we examine more directly whether past stock performance is a proxy for

investor underreaction to information about future earnings of firms. Table 1 and Table 2

suggest that the BF3 model, which employs an earnings-surprise factor formed on quarterly

earnings announcement returns, is the best performer in capturing time-varying profits of

WML but still cannot fully account for its conditionality.

We next use future announcement returns and (ex-post) analyst forecast errors as more

direct proxies of the magnitude of underreaction and test if the time-series variation in

momentum profits can be driven by time-varying underreaction of investors.

3.4.4.1 Future Announcement Returns

Past winners (losers) are more likely to have favorable (unfavorable) news about forthcoming

earnings in the recent past. Due to investor inattention or psychological bias of investors

such as conservatism, the information might not be fully incorporated into the price before

the earnings are actually announced (Hong and Stein 1999). Hence, past winners (losers)

should realize positive (negative) returns surrounding the upcoming quarterly earnings an-

nouncement. Using a portfolio approach, Jegadeesh and Titman (1993) document that about

25% of the returns on the zero-cost momentum portfolio for a 6-month holding period are

realized surrounding quarterly earnings announcement dates. This would be consistent with

corrections in expectations as new information is released, playing some role in momentum

profits.

We perform a similar exercise. Yet, different from Jegadeesh and Titman (1993) who re-

port the announcement returns of past winners in excess of the announcement returns of past

losers unconditionally, in Table 5, we perform univariate unconditional and conditional cross-

sectional Fama-MacBeth regressions, as described in Section 3.4.1. These examine whether

r2,12 can predict the 4-day cumulative raw and abnormal returns surrounding the upcoming

quarterly earnings announcement (FCR4 and FCAR4) and whether their predictive power
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is conditional on volatility states.19

In addition to the common sample selection criteria used in the formation of the WML

portfolio, we require stocks to have non-missing FRET, r2,12, FCR4 and FCAR4.20 Only

r2,12 is winsorized at the 1% and 99% levels each month. In line with the investment CAPM

test, our sample include momentum signals formed between 1972:06 and 2022:05. Panel A of

Table 5 presents WLS Fama-MacBeth regressions results for all stocks, and Panel B provides

OLS Fama-MacBeth regressions results for non-micro-cap stocks.

[Insert Table 5 near here]

The “Unc.” row in Panel A shows that investors seem to generally under-react to recent

positive (negative) news about future earnings of past winners (losers). The next three

rows show that evidence for predictability is generally more compelling when r2,12 is formed

during safe periods, that is, r2,12 is more strongly related to forthcoming quarterly earnings

announcement returns when the momentum signal is formed in Low-RV months. The last

row of the panel confirms that the difference is statistically significant.

Both FCAR4 and FCR4 columns show that the momentum signal formed during risky

periods is not informative about future announcement returns, which is consistent with its

relation with future stock returns. More importantly, the time-variation in predictive power

of r2,12 for FCR4 across volatility states mirrors the dynamics of relations between r2,12

and FRET. This suggests that the profitability of the momentum strategy depends on how

well r2,12 can proxy for investor underreaction to information about short-term prospects

of a firm. According to Panel B, the conclusions remain unchanged when performing OLS

Fama-MacBeth regressions without micro-cap stocks.21

19Suppose a firm announces quarterly earnings in month t (the previous announcement is in month t− 3).
The FCR4 and FCAR4 associated with the announcement are matched with r2,12 computed at the end of
months t − 1, t − 2 and t − 3. r2,12 and the volatility state are updated monthly, while the announcement
returns are updated roughly every three months. The construction of the two announcement return variables
is provided in Section IA1.2.1 of the Internet Appendix.

20Due to different filters applied, the regression sample used in this test is slightly different from that in
the investment CAPM test.

21To further confirm our findings, in Table IA4 of the Internet Appendix, we restrict the sample to firms
that announce quarterly earnings in the first month after the formation of the momentum signal. Both WLS
and OLS results show that coefficients of r2,12 on FCR4 monotonically decrease with momentum risk. The
differences in predictive power of r2,12 for FCAR4 and FCR4 between the Low-RV subsample and the rest
of the sample are significant at the 5% level (WLS) and 10% level (OLS).
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3.4.4.2 Analyst Forecast Errors

Antoniou, Doukas, and Subrahmanyam (2016) propose to use analyst forecast errors as a

relatively direct measure of noise trading activity. Ex post, forecast errors also provide a

more direct proxy for analyst underreaction—that is, whether firms’ actual results meet prior

expectations. For underreaction to explain our results, we should observe that analysts pro-

duce more optimistic (pessimistic) forecasts for stocks with poor (strong) past performance.

In other words, when the momentum strategy is less volatile, analysts would underreact to

public and / or private signals of past losers and winners, and investors would correct this

bias in the next quarterly earnings announcement.

To examine this channel, for each firm, at the end of each portfolio formation month,

we summarize all analysts’ forecasts for the firm’s forthcoming quarterly earnings per share

(EPS),22 and use the consensus EPS forecast along with actual EPS to compute analyst

forecast errors (FE). Specifically, we follow Antoniou, Doukas, and Subrahmanyam (2016)

and compute stock-level FE at the end of each formation month (t− 1) as

FEi,t−1 =
(Mean EPS Estimate)i,q,t−1 − (Actual EPS)i,q

|(Actual EPS)i,q|
(3.16)

where (Mean EPS Estimate)i,q,t−1 refers to the mean forecast for stock i’s EPS in quarter q

summarized at the end of month t − 1 and |(Actual EPS)i,q| denotes the absolute value of

stock i’s actual quarterly EPS from the upcoming earnings announcement for quarter q.23

At the end of each formation month, we sort stocks into deciles using r2,12. Portfolio

membership matches that used for decile portfolio construction. Within each decile, we

compute both equal-weighted and value-weighted average forecast errors.24 Forecast errors

22“Forthcoming EPS” refers to EPS from the forthcoming quarterly earnings announcement. For example,
at the end of January in year y, for firms with fiscal years ending in December that have already announced
their Q4 earnings for year y − 1, the next earnings to be announced are those for Q1 of year y; for firms
that have not yet announced their Q4 earnings for year y− 1, the forthcoming earnings are still those for Q4
of year y − 1. This is akin to how the literature constructs ex ante earnings-surprise signals: sue and car4,
that is, when computing the two signals, we extract earnings information or market reaction to the newly
announced earnings from the most recent earnings announcement date.

23To avoid rounding errors on the summary files of I/B/E/S adjusted forecast data, we recreate the
summary stats of EPS forecasts by joining “I/B/E/S Unadjusted Detail History” with “I/B/E/S Unadjusted
Actuals” using cumulative adjustment factors provided by CRSP.

24Hribar and McInnis (2012) conduct similar analysis for other stock characteristics including size, prof-
itability, volatility, age, and dividend payment. However, different from our method, they use annual forecast
data to calculate monthly FE of a decile and do not use updated forecasts to calculate monthly FE.
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are winsorized at the 5th and 95th percentiles in line with Antoniou, Doukas, and Subrah-

manyam (2016). Restricted by the availability of analyst forecast data, momentum signals

formed between 1983:12 and 2022:11 are tested.25 Table 6 reports cross-sectional and time-

series variations in value-weighted and equal-weighted forecasts errors. The t-statistics are

computed based on standard errors of Newey and West (1987).

[Insert Table 6 near here]

The table shows that average analyst forecast errors of all deciles are either significantly

positive or statistically insignificant at the 5% level. When weighting errors by stocks’ market

capitalization, we find that only the top decile has a negative and significant value-weighted

average earnings forecast error of −0.03 with a t-statistic of −2.06. So, analyst forecasts have

a systematic optimistic bias. This does not necessarily reflect a biased perception for the

part of analysts. Hong and Kubik (2003) document that, due to career concerns, analysts,

especially sell-side analysts, are more likely to produce optimistic forecasts. But regardless

of the origin of the bias in forecasts, it is striking that excessive optimism is much more

prevalent for past losers than for past winners. There is little to no bias in winners, the bias

is all in the losers. So, only past winning stocks are able to meet the high expectations of

analysts on average, all others disappoint. The t-statistic for the difference in equal-weighted

(value-weighted) FE between the winner and loser deciles (“H − L”) is −7.07 (−7.14). The

magnitude of the difference is 0.29 in both settings. Therefore underreaction seems stronger

in the short leg of the strategy.

Closer to the main point of the exercise, we find that across deciles, FE in Low-RV

months is always larger than FE in other months, regardless of the weighting methods.

All of these differences between volatility states are statistically significant with t-statistics

ranging between 4.87 and 6.07 (between 3.02 and 5.11) for equal-weighted (value-weighted)

forecast errors.26 Most importantly, in the upper part of the table, the spread in forecast

errors between winners and losers, patent in column “H − L”, more than doubles from

25We restrict the sample to firms with a link quality score of 0 or 1 according to “ICLINK” file available
on WRDS, which is used to link I/B/E/S and CRSP databases. In addition, we still use the 1972:07-2022:12
sample to define volatility states.

26Also addressing a suggested exercise, we check that the pattern remains unchanged when replacing the
denominator in Eq. (3.16) with stock prices (see Table IA5 in the Internet Appendix).
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−0.22 to −0.51 in safe periods relative to the rest with a t-statistic of −5.98 for the differ-

ence. Results in the lower part of the table for value-weighted forecast errors are consistent.

Therefore, analysts earnings forecasts are excessively optimistic on average and even more

so in safe periods. This time-variation in forecast errors fits well with the conditionality of

the momentum premium if driven by an underreaction channel.

3.5 Conditional factor-adjusted returns of long and short legs

Motivated by the pattern of analyst forecast errors as well as Stambaugh, Yu, and Yuan

(2012)’s finding that the short side earns higher unconditional FF3-adjusted return than the

long side on average for 10 out of 11 prominent anomalies including momentum (see Panel

C of their Table 1), we examine the conditional factor-adjusted returns of the long and short

legs of WML in Table 7.

[Insert Table 7 near here]

Regarding unadjusted returns, the short and long legs of WML work only in Low-RV

months, and momentum’s short leg contributes more to its overall profit, which is consistent

with asymmetric earnings forecast errors observed above. Notably, the raw returns earned

by the short leg of WML on average are approximately twice as much as the returns earned

by the long leg in low-volatility months. Our results for raw returns are consistent with

Wang and Xu (2015) who also find more predictability in the short leg of WML.

With regard to factor models’ performance in explaining the long leg, only BF3 can sub-

sume it in Low-RV months and only FF5 fails to span it in the remaining months. Moreover,

the time-varying alphas of WML can be fully captured by BF3. Generally, conditionality in

the long leg is weak as for most models the differences in alphas are not significant at the

5% level.

In contrast, all models fail to explain the conditionality of the short leg during safe

periods. Specifically, all alphas produced by the short leg in Low-RV states are significant

at the 1% level, and the differences in alphas between the Low-RV subsample and the rest

are also all significant at the 1% level.

Overall, our evidence indicates that the predictability and profitability of momentum

comes mostly from the short leg, and that can be attributable to analysts’ time-varying
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attention or optimism—especially excessive optimism relative to past losers. Moreover, our

evidence suggests that underreaction and short-sale constraints jointly determine the prof-

itability of the short leg of the anomaly. That is, consistent with Miller (1977) who ar-

gues that short-sale impediments can deter rational investors from profiting from overpriced

stocks.27

3.6 Other Results

In this subsection we briefly refer to robustness results for the 52-week high anomaly, and

for using market states as a conditional variable.

3.6.1 Conditionality of the 52-week High Momentum

Price momentum is not the only relative strength strategy of possible interest. George and

Hwang (2004) find that stocks whose prices are close to or at their 52-week highs earn higher

returns than stocks whose prices are far from their 52-week highs. They further argue that

nearness to the 52-week high (pth), a common reference point, can subsume the predictive

power of past price changes for expected returns.28 The details about the construction of

the stock-level pth variable and the corresponding decile-spread portfolio (denoted as PTH)

are provided in Section IA1.5 of the Internet Appendix.

Empirically, using conditional Fama-MacBeth-WLS regressions, we find that the two

anomalies have independent predicting power for return in the state of low momentum

volatility, especially over the period of 1972:07 to 2022:12. (see Table IA6 of the Internet

Appendix).29 Yet, unconditionally, the predictive power of pth for one-month-ahead returns

can be subsumed by past stock performance. This is consistent with the spanning regression

27Empirical studies related to this argument include Nagel (2005), Hirshleifer, Teoh, and Yu (2011),
Stambaugh, Yu, and Yuan (2012), Avramov, Chordia, Jostova, and Philipov (2013), Stambaugh, Yu, and
Yuan (2015), and Drechsler and Drechsler (2018).

28Conceptually, prior returns and nearness to the 52-week high appear to be closely related, and a stock
with strong (poor) past performance seems to be more likely to have a price close to (far from) its 52-week
high. However, a stock whose price is close to (far from) the 52-week high is not necessarily a stock with
strong (poor) performance in the past year, and vice versa. George, Hwang, and Li (2018) argue that
“momentum captures how stock prices have changed over a fixed period of time, and PTH captures how
prices have changed from their recent peaks.”.

29Table IA6 of the Internet Appendix also indicates that controlling for stocks’ nearness to 52-week highs
can enhance the profitability of momentum in both High-RV states and Medium-RV states and absorb the
conditionality of momentum.
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result of George, Hwang, and Li (2018) that the Fama and French (1993) 3-factor model

augmented with a momentum factor (Carhart 1997) can span the 1-month PTH. But the

same study finds it does not span both the 6-month and the 12-month PTH. Regardless, in

line with the analysis for the momentum strategy, our analysis for the 52-week high anomaly

is focused on the PTH portfolio with a holding period of 1 month.

Similar to the conventional momentum strategy, the profits of the 52-week high strategy

have been attributed to both delayed price reaction to firm-specific information30 and pth’s

associations with future profitability and future investment growth of firms based on the

investment CAPM.

We find the payoffs of the 52-week high strategy significantly vary with momentum

volatility states. Panel A of Table IA7 in the Internet Appendix shows 75% of PTH returns

are produced during Low-RV periods, and that this conditionality cannot be explained by

the q4, BF3 and EL6 models. Notably, cross-sectional Fama-MacBeth regressions testing

the investment CAPM explanation for the 52-week high, which are reported in Table IA8 of

the Internet Appendix, show that the associations of pth with future profitability and future

investment growth are also not conditional on momentum’s risk. So, PTH shows similar

properties to momentum in our conditional tests.

[Insert Table 8 near here]

Table 8 presents time-series variation in analyst forecast errors for earnings across pth-

sorted deciles.31 Similar to the pattern of r2,12-sorted deciles, average analyst forecast errors

of all pth-sorted deciles are either significantly positive or statistically insignificant at the

5% level, irrespective of the weighting method, suggesting a systematic optimistic bias. The

“L − M&H” rows of two panels show that forecast errors of stocks far from their 52-week

highs are larger in safe periods. The differences in value-weighted (equal-weighted) forecast

errors between safe months and other months for the bottom and high deciles are 0.43 (0.40)

30The underreaction can result from conservatism of investors (Li and Yu 2012) and “adjustment and
anchoring bias” of investors (George and Hwang 2004), i.e., traders tend to use the 52-week high as an
anchor against which they assess the potential impacts of new firm-specific information on prices.

31Results regarding Fama and MacBeth (1973) regressions of future announcement returns on pth are
provided in Table IA8. Similar to what we document regarding momentum, nearness to the 52-week high
has stronger positive predictive power for returns surrounding upcoming earnings announcement, especially
those adjusted for market returns.
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and 0.11 (0.09). In other words, like past losers defined by the momentum signal, low-pth

stocks are much more susceptible to analysts’ time-varying optimism, a result consistent

with time-varying underreaction.

This pattern also implies that the short leg of PTH should show more conditionality.

Indeed, as shown in Panel B of Table IA7 in the Internet Appendix, the q4, BF3 and EL6

models can all subsume the long leg of PTH regardless of the volatility level. But, despite

successfully subsuming PTH when volatility is not low, all three models fail to span the

short leg of PTH in safe states. Moreover, the differences in alphas between the Low-RV

subsample and the rest for the three factor models are all statistically significant at the 1%

level.

3.6.2 Market States

We next examine the seminal momentum predictor: market states. Following Cooper,

Gutierrez Jr., and Hameed (2004), we define the market state of a formation period ending

in month t − 1 using the cumulative past one-year return on the CRSP value-weighted in-

dex (dividends included). If the return is non-negative (negative), the formation period is

classified as Up (Down).32

The set of columns labeled y = WML in Table 9 presents unadjusted returns, factor-

adjusted returns, and Sharpe ratios of WML during the full sample period, in Up-Market

states, and in Down-Market states.

[Insert Table 9 near here]

Generally, the predictive power of market states for returns is somehow weaker than that

of the realized volatility of momentum. Despite WML generating a significant positive return

of 1.34% in Up markets, the return difference between Up and Down markets is smaller than

that between the Low-RV subsample and the rest of the sample (1.41% vs 2.07%). More

importantly, the difference of 1.41% is not statistically significant. But, WML’s Sharpe

ratio is significantly conditional on market states with a difference of 0.79 (p-value = 0.04).

32Cooper, Gutierrez Jr., and Hameed (2004) offer three definitions of market states and primarily present
their results using prior three-year market returns. Daniel and Moskowitz (2016) use the two-year definition
of the market state. The trade-off in the selection of a horizon is between strength of a state and frequency
of state changes. This state variable is an ex-ante indicator.
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After accounting for WML’s exposure to factors, WML is still a dismal strategy in Down

markets with insignificant alphas ranging from −1.40% to 0.12%, whereas only the BF3

model can subsume momentum in Up markets at the 5% level. Furthermore, except for the

CAPM model, none of the factor models captures the change in alphas of WML between

the two market states. On top of this, the remaining columns present performance of three

momentum strategies conditional on market sates. In strategies (1) through (3), investors

are assumed to execute the momentum strategy in Up markets only and hold the risk-

free asset (Strategy (1)), the market portfolio (Strategy (2)) or the reverse of momentum

strategy (Strategy (3)) in Down markets. Consistent with results regarding momentum

volatility, no models can span the three managed momentum portfolios. This finding is also

consistent with Liu and Zhang (2014) who document that the investment CAPM fails to

explain conditionality of momentum with respect to market sates using a structural model.

3.6.3 Other Factor Models

Building on two of the explanations we already examine—underreaction and the investment

CAPM—there are three other factor models that can also subsume WML unconditionally.

Here, for completeness, we discuss the conditional performance of WML relative to these

models. The first is a modified version of the q4 model where the ROE factor is decomposed

into a low-frequency earnings profitability factor and a post-earnings announcement drift fac-

tor (Novy-Marx 2015b, q4a). The second is Novy-Marx (2015a)’s ad hoc factor model, which

augments the Fama and French (1993) three-factor model with two earnings-surprise fac-

tors formed on standardized unexpected quarterly earnings (SUE factor) and post-earnings

announcement drift (i.e., the PEAD factor used in the BF3 model). The third is the aug-

mented q-factor model of Hou et al. (2021), which is based on the multiperiod investment

CAPM and uses roe, and a linear combination of Tobin’s q, operating cash flow, and changes

in quarterly roe to proxy for firms’ expected profitability and expected investment growth,

respectively.

Table A3 in the Appendix shows results for conditional tests of the three models. Overall,

both conditional factor regressions and unconditional factor regressions of the four condi-

tional momentum strategies introduced in Section 3.3.2 show that none of the three models

are able to explain the conditionality of momentum. Notably, NM5, whose explanatory

power for momentum comes from the two earnings-surprise factors, is the only model sub-
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suming WML in safe months (t-statistic = 1.61) though the difference in alphas between safe

and other states is still statistically significant; it also outperforms q4a and q5 in terms of the

absolute value of t-statistics associated with alphas from unconditional factor regressions of

the conditional momentum strategies.

3.7 Interpreting the Results

Our study focuses on a somehow comprehensive analysis of three core explanations for mo-

mentum. Given the eclectic state of the literature on momentum, this necessarily leaves out

many other explanations for the phenomenon and that is a limitation of our study. Here we

broaden the scope of our study discussing its possible relations with six possible explanations

for momentum or its conditionality. We briefly comment on each one and the avenues of

research we did not explore, also justifying these choices. We also discuss limitations and

comment on possible directions for future research.

3.7.1 Other Explanations

Growth options. Momentum can be explained in a rational setting with single-firm models

(Berk, Green, and Naik 1999; Johnson 2002; Sagi and Seasholes 2007). In such models,

winners would have higher average returns due to their valuable growth options, not to

underreaction or other investor biases. We do not test growth options explicitly as an

explanation, although we test the related investment CAPM. Nevertheless, growth options

should be more valuable in high-volatility periods. As momentum is much more profitable

in low-volatility periods, growth options seem a priori, an unlikely channel for our results.

Business cycle risk. Chordia and Shivakumar (2002) find that stock momentum in

the U.S. is explained by macroeconomic risk. Liu and Zhang (2008) find that industrial

production is particularly effective explaining momentum profits. We do not explore whether

business cycle risk is able to explain our findings for three types of reasons: i) relevance; ii)

robustness concerns; and iii) plausibility. First, while business cycle risk is able to partially

explain momentum in some previous studies, it typically does not subsume it as our set of

core explanations does. Given limited time, it makes sense to focus first on explanations for

momentum that do span it. Second, Griffin, Ji, and Martin (2003) find that macroeconomic

risk shows little relation to momentum in international evidence. Additionally, Ji, Martin,
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and Yao (2017) show that momentum’s loading on industrial production is only observed

in January, which is the month of the year when momentum produces negative returns.

So, industrial production looks like an unlikely candidate as an explanation. Regardless of

these robustness issues, for business cycle risk to explain the conditionality of momentum

on volatility, the strategy should covary more with macroeconomic risk when it becomes

less volatile. While mathematically possible, this seems implausible as higher loadings on

omitted macroeconomic variables should normally be associated with higher volatility of

the strategy, not less. Therefore, we take this as a possible expansion path for our current

research, yet one of relatively modest promise.

Frog-In-the-Pan (FIP). Intuitively, our results on underreacion may be related to

those of the FIP hypothesis proposed by Da, Gurun, and Warachka (2014) according to

which investors are less attentive to information being gradually incorporated into prices.

Based on this, they propose a measure for information discreteness and find that for a given

level of formation period returns, momentum in stocks with discrete information is much

less profitable than in those with gradually released information. Also, they document that

more media coverage, a proxy for attention, can narrow this cross-sectional return gap.33 Our

study differs from theirs by emphasizing the time-series variation in investor underreaction

at an aggregated level. In unreported results, we find a very weak correlation of an aggregate

measure of information discreteness with momentum’s volatility. Therefore, FIP looks like

an unlikely channel for our results. Still, we fall short of a thorough exploration of whether

FIP can relate with our results in other ways and leave that for future research.

Disposition effect. Momentum can also result from investors’ reluctance to sell losing

stocks and eagerness to realize gains of winning stocks, i.e., disposition effect (Grinblatt and

Han 2005). On top of this, Grinblatt and Moskowitz (2004) find that past winners with

more consistent past returns can earn higher returns, but such pattern is not observed for

past losers. We refrain from examining the disposition effect as a channel for momentum’s

conditionality for two reasons. First, our evidence on analyst forecast errors, does not support

the implications of a disposition effect as analysts are unlikely subject to this effect as they do

not necessarily own the stocks being analyzed. Second, for the disposition effect to explain

33Apart from momentum, Chen, He, Tao, and Yu (2023) suggest that the recently proposed factors such
as RMW, CMA, ROE, and PEAD and other anomalies attributable to underreaction in the literature are
more profitable among firms with low news coverage.
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momentum’s conditionality, we should see fewer stocks trading at prices below their investors

reference points in times of high volatility. This would be surprising as high volatility periods

tend to also be periods of low past market returns. The conditionality we observe, especially

in the short leg, goes exactly in the other direction.

Covariance of momentum stocks. Observing negative autocorrelations and cross-

serial correlations of industry, size and value portfolios, Lewellen (2002) argues that under-

reaction to portfolio-specific news alone is not sufficient to explain momentum, since it cannot

account for the negative serial correlation of the portfolios and, therefore, that it would be

more plausible to attribute those portfolios’ momentum to excess covariance among stocks.

We do not explore the relation of our underreaction results with excess covariance for three

reasons. First, Lewellen (2002)’s result is for momentum in diversified stock portfolios, not

momentum at the individual stock level. A hypothetical absence of underreaction at the

portfolio level is not necessarily inconsistent with the same bias being there for individual

stocks. Second, we expect that excess co-movement of momentum stocks should be positively

related to the realized volatility of the strategy. For instance, ceteris paribus, winners be-

coming more correlated should make the strategy riskier. From a time series perspective, it is

thus unlikely that excess covariance would explain individual stock momentum as volatility

predicts it negatively in the data. Finally, the literature offers explanations whereby excess

covariance among momentum individual stocks can be reconciled with underreaction. For

example, momentum stocks can exhibit excess co-movement due to crowding effects (Lou

and Polk 2022), an accidental overlap with an underlying factor structure (Kozak, Nagel,

and Santosh 2018) or noise trader risk (Shleifer 2000, Ch. 2).

Co-momentum. Focusing on individual stocks, Lou and Polk (2022) use abnormal

return correlation among momentum stocks to measure arbitrage activity which can be

destabilizing if the momentum crowd becomes too large. By definition, the realized volatility

of momentum is positively correlated with covariance of momentum stocks. They point out

that whether momentum is an underreaction phenomenon depends on the level of momentum

stocks’ excess covariances. The notion is that arbitrager’s demand likely increases with lagged

returns of individual stocks under the positive-feedback trading strategy like momentum.

They rationalize their findings by leveraging the underreaction-based model of Hong and

Stein (1999) as a base and assuming the number of momentum traders to change over time in

a stochastic manner, that is, the spread between the numbers of observable and unobservable
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momentum traders (amounts of arbitrage capital) vary over time. A plausible explanation

for our observed conditionality is thus that realized volatility of momentum could capture

time-variation in arbitrage capital. While promising, a problem with this research path is

that proxies for momentum’s arbitrage capital directly obtained from institutional holdings

show little relation with momentum’s volatility (Barroso, Edelen, and Karehnke 2022).

A perhaps more promising path goes in another direction. Our evidence, especially results

related to analyst forecast errors, is more relevant to the other trader group under the Hong

and Stein (1999) model, i.e., news watchers. Instead of assuming a constant number of

news watchers with time-invariant attention homogeneous to all stocks, there might be time

variations in participation rates of news watchers and in their attention.

3.7.2 Limitations

One concern about the after-cost profitability of the proposed conditional momentum strate-

gies is that price impact costs are omitted in the calculation of trading costs. These can

constrain the capacity of the strategy. Still, Korajczyk and Sadka (2004) report that the

3-month (overlapping) value-weighted momentum strategy based on past 11-month returns

(i.e., skipping formation month)—the best-performing variant of underlying momentum port-

folios of our conditional strategies—has a zero-alpha break-even fund size of more than 2

billion dollars, which is estimated using the 1967–1999 data. As conditional momentum is

much more profitable after costs than plain momentum, it seems likely that incorporating

conditionality could raise this capacity limit further; how much so seems like an interesting

research question for the future.

Throughout the paper, we document a clear association between the prevalence of un-

derreaction and the occurrence of low volatility regimes, but our study remains silent on

causality-related discussions. From a conventional asset pricing perspective, the causal di-

rection is not the object of main interest since regardless of the direction, the relation is still

predictive, robust, and can thus be used to expand the mean-variance frontier and evaluate

the performance of fund managers in real time relative to the main factor models proposed

in the literature. But we leave for future research if decreases in volatility make investors less

attentive or if, instead, less attentive investors make markets less volatile. For this, possible

sources of exogenous variation in attention (or in volatility) should be identified. Regardless,

the two economic mechanisms are both compatible with our results.
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Our analysis lacks direct calibrations of theoretical models of momentum. As mentioned

above, we can potentially extend Hong and Stein (1999)’s model by allowing information to

diffuse among the newswatcher population at a time-varying rate.34

Due to our in-depth focus on the U.S. market and broad examination of the core theories,

we do not examine international evidence. This could be a concern since, in spite of the

critical and unique economic role of the U.S. market, explanations that hold in the U.S.

data do not necessarily hold internationally. For example, pronounced outperformance of

the momentum portfolio formed on past returns from month t− 12 to t− 7 relative to that

formed on past returns from month t− 6 to t− 2 (i.e., “echo” in returns) is not observed in

international stock markets (Goyal and Wahal 2015). On the other hand, using unconditional

settings with international stocks, Goyal, Jegadeesh, and Subrahmanyam (2025) uncover

the leading role of investor underreaction in explaining momentum in international stocks,

the same driver we identify with very different tests in the U.S.. Also, Schwarz (2021)

shows that volatility-managed momentum is remarkably robust in a comprehensive sample

of international markets. The two findings combined alleviate the concern from our sole

focus on the U.S. stock market: neither underreaction’s prominent role for momentum nor

the conditionality of momentum on volatility look like U.S. singularities.

Finally, we test the conditional fit of theories of momentum using proxies for their eco-

nomic mechanisms as proposed in previous studies. We do this aiming to stay close to

previous literature in our setting. A consequential natural limit of our results is that those

proxies might not be the best for the respective economic mechanisms. Hence, tests com-

paring theories might come to different conclusions with different proxies. Still, it can also

be argued that it is actually better, when coming up with a new test setting, to use only

proxies previously proposed in other studies and by other authors and with intuitive rela-

tions, argued independently and elsewhere, to the theories compared; this as opposed to

using proxies designed having in mind the specific new test setting carried out.

34Although the momentum generating mechanism described in the model of Daniel, Hirshleifer, and Sub-
rahmanyam (1998) is not based on underreaction, in unreported results, we find partial compatibility of
momentum’s conditionality with the model.
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4 Conclusion

Prior studies document that stock momentum can be explained by investor underreaction,

the investment CAPM, and momentum in factors. It is puzzling that the three explanations,

which are presumably incompatible with each other can account for the same anomaly. Fol-

lowing the suggestion of Subrahmanyam (2018), we compare the three competing theories

and try to spot the real cause by examining what drives momentum when it works. Our

tests are based on the fact that the profitability of momentum strongly depends on several

state variables, particularly momentum’s lagged realized volatility. Specifically, momentum’s

payoffs strongly vary with momentum volatility in a negative direction and such condition-

ality is practically robust in the presence of trading costs. We posit that a true driver of the

anomaly should be able to match this time variation.

Our evidence is more supportive of the underreaction explanation for the anomaly com-

pared to the explanations based on stock momentum’s associations with q-factors and factor

momentum. First, we find that Daniel, Hirshleifer, and Sun (2020)’s factor model, which

includes an earnings-surprise factor, not only spans price momentum unconditionally but

also is the best performing model in capturing momentum when it works (i.e., during low-

volatility periods). The analysis on future earnings announcement returns confirms winners

(losers) earning higher (lower) returns in safe states, a pattern coherent with underreaction

and subsequent correction in expectations. Concurrently, analyst forecasts are excessively

optimistic on average, especially with loser stocks and in times of low volatility. This is

also consistent with underreaction being more prevalent in low-volatility environments. Ad-

ditionally, we document that the conditionality of momentum cannot be attributed to its

time-varying associations with two return determinants implied by the investment CAPM

or with momentum in factor returns.
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Figure 2 Before-cost and After-cost Performance of Unconditional and Conditional Momentum Strategies

The figure depicts the Sharpe ratio and net Sharpe ratio (Panel A), as well as turnover and trading costs (Panel B), for five
momentum strategies: the unconditional momentum strategy (Unc.), a cost-mitigated momentum strategy using the “banding”
technique introduced in Novy-Marx and Velikov (2016), and three conditional momentum strategies (Cond#) exploiting the
volatility states of momentum. Trading costs of stocks are computed using the effective spread estimator of Hasbrouck (2009).
We apply the 10%/20% rule for the “banding” strategy, in which traders go long (short) stocks with past returns in the top
(bottom) decile and keep them until they drop out of the top (bottom) quintile. In the three conditional momentum strategies,
at the end of each month, traders only implement the momentum strategy when the (ex-ante) volatility state is Low-RV, holding
the portfolio for 1, 3, and 6 months, respectively (denoted as “Cond1”, “Cond3”, and “Cond6”). We use an expanding look-back
window starting from 1927:06 to determine the percentiles of realized volatility of momentum (RV), as defined by σ̂WML,t−1

from Eq. (3.1). The volatility states are determined by classifying a formation period ending in month t − 1 as High-RV,
Medium-RV, or Low-RV, according to whether σ̂WML,t−1 belongs in the top 30%, middle 40%, or bottom 30%, respectively.
The sample period is 1972:07 to 2022:12.
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Table 1 Performance of Momentum Conditional on Volatility States

This table presents unconditional and conditional performance of the momentum (WML) strategy in terms of raw excess
returns, factor-adjusted returns (a.k.a alphas) and Sharpe ratios. The sample period is 1972:07 to 2022:12. We split the sample
period into three volatility states based on the 30%-30% cutoff points for the lagged realized volatility (RV) of momentum, as
defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are determined by classifying a formation period ending in month
t − 1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the
bottom 30%, respectively. The column labeled “Unc.” reports unconditional performance of WML. The following four columns
report the performance of WML conditional across different volatility states. Alphas in each volatility state are estimated using
Eq. (3.2). The column labeled “L − M&H” presents differences in alphas or Sharpe ratios between the Low-RV subsample
and the rest of the sample (i.e., High- and Medium-RV subsamples combined, which is denoted as M&H). The differences in
alphas are estimated using Eq. (3.3). “p-value” denotes the p-value of the difference in Sharpe ratios computed from 100,000
bootstrap samples. The factor models considered include: the market model (Sharpe 1964; Lintner 1965; Black 1972, CAPM),
the Fama-French 5-factor model (Fama and French 2015, FF5), the q-factor model (Hou, Xue, and Zhang 2015, q4), the
risk-and-behavioral 3-factor model (Daniel, Hirshleifer, and Sun 2020, BF3), and the FF5 model augmented with the (off-the-
shelf) factor momentum strategy of Ehsani and Linnainmaa (2022, EL6). Heteroskedasticity-adjusted t-statistics are shown in
parentheses.

Unc. High Medium Low M&H L − M&H

Constant 1.02∗∗∗
(3.38)

0.25
(0.31)

0.51
(1.37)

2.47∗∗∗
(7.87)

0.40
(0.98)

2.07∗∗∗
(4.03)

Factor-Adjusted Returns
CAPM 1.21∗∗∗

(4.24)
0.72
(1.03)

0.51
(1.33)

2.47∗∗∗
(7.85)

0.69∗
(1.84)

1.78∗∗∗
(3.62)

FF5 1.24∗∗∗
(3.87)

0.31
(0.42)

0.80∗
(1.86)

2.37∗∗∗
(6.06)

0.72∗
(1.75)

1.65∗∗∗
(2.93)

q4 0.41
(1.25)

−0.23
(−0.34)

−0.19
(−0.42)

1.66∗∗∗
(4.32)

−0.09
(−0.23)

1.75∗∗∗
(3.15)

BF3 −0.01
(−0.02)

−0.23
(−0.32)

−0.49
(−1.13)

1.30∗∗∗
(2.99)

−0.38
(−0.87)

1.68∗∗∗
(2.73)

EL6 0.06
(0.23)

−0.41
(−0.77)

0.22
(0.67)

1.28∗∗∗
(3.30)

−0.18
(−0.59)

1.45∗∗∗
(2.98)

Sharpe Ratios
SR 0.48 0.08 0.31 2.02 0.17 1.85
p-value - - - - - 0.00
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Table 2 Performance of Conditional Momentum Strategies

This table presents raw excess returns, factor-adjusted returns and Sharpe ratios for four conditional momentum strategies.
The sample period is 1972:07 to 2022:12. We split the sample period into three volatility states based on the 30%-30% cutoff
points for the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states
are determined by classifying a formation period ending in month t − 1 as High-RV, Medium-RV, or Low-RV, according to
whether σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. Column (1) assumes investors
holding only the risk-free asset (with zero excess returns), except in Low-RV months when they implement the momentum
strategy. Column (2) describes a strategy where the market factor strategy is implemented consistently, except in Low-RV
months when the momentum strategy is implemented. Column (3) corresponds to a strategy where investors implement the
momentum strategy in Low-RV months, hold the risk-free asset in Medium-RV months, and implement the reverse momentum
strategy (i.e., losers-minus-winners) in High-RV months. Column (4) explores the volatility-managed momentum strategy of
Barroso and Santa-Clara (2015). The factor models considered include: the market model (Sharpe 1964; Lintner 1965; Black
1972, CAPM), the Fama-French 5-factor model (Fama and French 2015, FF5), the q-factor model (Hou, Xue, and Zhang 2015,
q4), the risk-and-behavioral 3-factor model (Daniel, Hirshleifer, and Sun 2020, BF3), and the FF5 model augmented with the
(off-the-shelf) factor momentum strategy of Ehsani and Linnainmaa (2022, EL6). Heteroskedasticity-adjusted t-statistics are
shown in parentheses.

(1) (2) (3) (4)

Constant 0.74∗∗∗
(7.08)

1.22∗∗∗
(6.46)

0.67∗∗
(2.52)

1.24∗∗∗
(6.27)

Factor-Adjusted Returns
CAPM 0.75∗∗∗

(7.05)
0.80∗∗∗
(5.63)

0.49∗∗
(2.00)

1.30∗∗∗
(6.63)

FF5 0.74∗∗∗
(6.45)

0.86∗∗∗
(5.73)

0.52∗
(1.89)

1.35∗∗∗
(6.18)

q4 0.64∗∗∗
(5.71)

0.83∗∗∗
(5.53)

0.92∗∗∗
(2.93)

0.89∗∗∗
(4.17)

BF3 0.56∗∗∗
(5.14)

0.73∗∗∗
(4.76)

0.96∗∗∗
(2.75)

0.54∗∗
(2.54)

EL6 0.60∗∗∗
(5.49)

0.76∗∗∗
(5.06)

1.16∗∗∗
(4.21)

0.68∗∗∗
(3.77)

Sharpe Ratios
SR 1.00 0.91 0.35 0.88
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Table 3 Testing the Investment CAPM with Cross-sectional Fama-MacBeth Regressions

This table reports coefficient estimates from univariate unconditional (“Unc.”) and conditional Fama-MacBeth regressions of
future stock returns (FRET), future profitability (FROE), or future investment growth (FIG) in month t onto the underlying
variable of the momentum (WML) strategy (i.e., the cumulative return from t− 12 to t− 2). Panel A reports results based on
cross-sectional weighted least squares (WLS) regressions for all stocks, and Panel B presents results based on cross-sectional
ordinary least squares (OLS) regressions for non-micro-cap stocks. Only FRET is multiplied by 100. The first four rows of
each panel report respectively unconditional coefficient estimates (“Unc.”) and coefficient estimates in three volatility states
(“High”, “Medium”, and “Low”), computed based on Eq. (3.9) and Eq. (3.10). The sample includes momentum signals formed
between 1972:06 and 2022:05. We split the sample period into three volatility states based on the 30%-30% cutoff points for
the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are determined
by classifying a formation period ending in month t− 1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂WML,t−1

belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. The “L − M&H” row shows differences in coefficient
estimates between the Low-RV subsample and the combined Medium- and High-RV subsamples (i.e., subsample M&H), as
detailed in Eq. (3.11). t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in
parentheses.

FRET FIG FROE

Panel A: WLS (All Stocks)
Unc. 0.75∗∗∗

(3.22)
0.04∗∗∗
(10.47)

0.11∗∗∗
(9.47)

High 0.22
(0.34)

0.05∗∗∗
(5.62)

0.14∗∗∗
(4.90)

Medium 0.46∗∗
(2.00)

0.03∗∗∗
(6.68)

0.09∗∗∗
(5.88)

Low 1.68∗∗∗
(5.08)

0.05∗∗∗
(9.47)

0.12∗∗∗
(7.83)

M&H 0.36
(1.22)

0.04∗∗∗
(7.75)

0.11∗∗∗
(7.08)

L − M&H 1.33∗∗∗
(3.03)

0.01
(1.40)

0.00
(0.23)

Panel B: OLS (Non-Micro-Cap Stocks)
Unc. 0.68∗∗∗

(3.21)
0.05∗∗∗
(12.35)

0.09∗∗∗
(10.20)

High 0.16
(0.26)

0.05∗∗∗
(6.54)

0.11∗∗∗
(4.49)

Medium 0.36∗
(1.86)

0.04∗∗∗
(9.93)

0.07∗∗∗
(7.06)

Low 1.65∗∗∗
(6.33)

0.05∗∗∗
(7.75)

0.11∗∗∗
(10.17)

M&H 0.27
(1.03)

0.04∗∗∗
(10.28)

0.08∗∗∗
(7.27)

L − M&H 1.37∗∗∗
(3.72)

0.00
(0.47)

0.02
(1.54)
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Table 4 Testing the Factor Momentum Channel

Panel A presents unconditional and conditional returns of the factor momentum (FMOM) strategy as well as difference in
FMOM returns between the low-volatility subsample and the rest of the sample. Volatility states of FMOM are defined in the
same way as those of stock momentum except that we use σ̂FMOM,t−1 from Eq. (3.15) as the state variable. Panel B presents
unconditional and conditional returns of the stock momentum (WML) strategy sorted on the lagged correlation between daily
WML returns and daily FMOM returns (ρ̂{WML,FMOM},t−1

) with the 30%-30% cutoff points. The last column reports the
difference in WML returns between Low-correlation months and remaining months. Panel C presents WML returns sorted
independently on the lagged realized volatility of WML (σ̂WML,t−1 ) and ρ̂{WML,FMOM},t−1

and the differences in WML returns

between the Low-RV (or Low-correlation) subsample and the rest of the sample. The sample period is 1972:07 to 2022:12.
Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Panel A: FMOM vs σ̂FMOM,t−1

Unc. High Medium Low M&H L − M&H

Constant 0.34∗∗∗
(6.64)

0.35∗∗∗
(2.58)

0.37∗∗∗
(5.65)

0.29∗∗∗
(5.23)

0.36∗∗∗
(5.23)

−0.07
(−0.83)

Panel B: WML vs ρ̂{WML,FMOM},t−1

Unc. High Medium Low M&H L − M&H

Constant 1.02∗∗∗
(3.38)

0.78
(1.23)

0.55
(1.17)

1.89∗∗∗
(4.05)

0.65∗
(1.70)

1.23∗∗
(2.05)

Panel C: Independent Double Sorting on σ̂WML,t−1 and ρ̂{WML,FMOM},t−1
for WML

ρ̂{WML,FMOM},t−1

H M L M&H L − M&H

σ̂WML,t−1

H 0.35
(0.36)

−0.61
(−0.40)

2.50
(0.74)

0.02
(0.02)

2.49
(0.72)

M 0.57
(0.62)

−0.18
(−0.31)

1.30∗∗
(2.22)

0.05
(0.11)

1.25
(1.65)

L 2.86∗∗∗
(3.53)

2.38∗∗∗
(4.59)

2.43∗∗∗
(5.46)

2.50∗∗∗
(5.72)

−0.07
(−0.11)

M&H 0.42
(0.57)

−0.33
(−0.51)

1.50∗∗
(2.04)

0.03
(0.07)

1.46∗
(1.67)

L − M&H 2.44∗∗
(2.25)

2.70∗∗∗
(3.27)

0.93
(1.09)

2.47∗∗∗
(3.79)
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Table 5 Testing the Underreaction Channel: Future Announcement Returns

This table reports coefficient estimates from univariate unconditional (“Unc.”) and conditional Fama-MacBeth regressions of
returns in month t (FRET) as well as cumulative raw and abnormal returns surrounding the first quarterly earnings announce-
ment subsequent to the formation month t − 1 (FCR4 and FCAR4) onto the underlying variable of the momentum (WML)
strategy (i.e., the cumulative return from t−12 to t−2). Panel A reports results based on cross-sectional weighted least squares
(WLS) regressions for all stocks, and Panel B presents results based on cross-sectional ordinary least squares (OLS) regressions
for non-micro-cap stocks. All dependent variables are multiplied by 100. The first four rows of each panel report respectively
unconditional coefficient estimates (“Unc.”) and coefficient estimates in three volatility states (“High”, “Medium”, and “Low”),
computed based on Eq. (3.9) and Eq. (3.10). The sample includes momentum signals formed between 1972:06 and 2022:05.
We split the sample period into three volatility states based on the 30%-30% cutoff points for the lagged realized volatility
(RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are determined by classifying a formation
period ending in month t − 1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂WML,t−1 belongs in the top 30%,
the middle 40%, or the bottom 30%, respectively. The “L − M&H” row shows differences in coefficient estimates between the
Low-RV subsample and the combined Medium-RV and High-RV subsamples (i.e., subsample M&H), as detailed in Eq. (3.11).
t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in parentheses.

FRET FCAR4 FCR4

Panel A: WLS (All Stocks)
Unc. 0.77∗∗∗

(3.30)
0.32∗∗∗
(2.97)

0.33∗∗∗
(2.98)

High 0.23
(0.38)

0.21
(0.98)

0.12
(0.54)

Medium 0.45∗
(1.89)

0.20∗
(1.72)

0.29∗∗∗
(2.89)

Low 1.72∗∗∗
(5.10)

0.57∗∗∗
(4.31)

0.59∗∗∗
(4.20)

M&H 0.36
(1.24)

0.21
(1.58)

0.22
(1.63)

L − M&H 1.36∗∗∗
(3.12)

0.36∗∗
(2.03)

0.37∗∗
(2.01)

Panel B: OLS (Non-Micro-Cap Stocks)
Unc. 0.68∗∗∗

(3.13)
0.33∗∗∗
(3.30)

0.36∗∗∗
(3.69)

High 0.14
(0.26)

0.18
(0.95)

0.20
(1.22)

Medium 0.37∗
(1.88)

0.19
(1.51)

0.24∗
(1.82)

Low 1.62∗∗∗
(6.10)

0.66∗∗∗
(6.36)

0.69∗∗∗
(6.56)

M&H 0.28
(1.06)

0.19∗
(1.71)

0.22∗∗
(2.13)

L − M&H 1.34∗∗∗
(3.66)

0.47∗∗∗
(3.44)

0.46∗∗∗
(3.40)
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Table 6 Testing the Underreaction Channel: Time-series and Cross-sectional Variation in Analyst Forecast Errors

This table presents the variation in analyst forecast errors across r2,12-sorted deciles and different volatility states. r2,12 represents cumulative return from
month t − 12 to t − 2, which is the underlying variable of the momentum (WML) strategy. For each firm, at the end of each portfolio formation month
(t − 1), we aggregate all analysts’ forecasts for the firm’s forthcoming quarterly earnings per share (EPS) and then calculate analyst forecast errors using
the mean EPS forecast along with the actual EPS based on Eq. (3.16). At the end of each formation month (t− 1), we sort stocks into deciles using r2,12.
Portfolio membership mirrors that used in the construction of decile portfolios. Within each decile, we compute the equal-weighted and value-weighted
average (denoted as EW and VW) forecast errors using the full sample, the three subsamples (High-RV, Medium-RV, and Low-RV) and Medium- and
High-RV subsamples combined. The “L − M&H” row shows differences in EW or VW forecast errors across deciles. The sample includes momentum signals
formed between 1983:12 and 2022:11. Note that subsamples (i.e., momentum volatility states) are determined using the sample period of 1972:07 to 2022:12
with the 30%-30% cutoff points. t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in parentheses.

Decile L 2 3 4 5 6 7 8 9 H H − L

EW Forecast Errors
Full Sample 0.31∗∗∗

(5.55)
0.24∗∗∗
(5.59)

0.19∗∗∗
(5.49)

0.16∗∗∗
(5.19)

0.12∗∗∗
(5.06)

0.10∗∗∗
(4.44)

0.08∗∗∗
(3.97)

0.06∗∗∗
(3.42)

0.05∗∗∗
(2.74)

0.02
(1.32)

−0.29∗∗∗
(−7.07)

High 0.14∗∗∗
(2.80)

0.12∗∗∗
(2.71)

0.10∗∗∗
(2.78)

0.08∗∗∗
(2.62)

0.06∗∗
(2.20)

0.04
(1.48)

0.02
(0.91)

0.00
(0.11)

−0.02
(−0.88)

−0.04∗∗∗
(−2.64)

−0.18∗∗∗
(−4.70)

Medium 0.28∗∗∗
(4.86)

0.21∗∗∗
(4.82)

0.17∗∗∗
(4.40)

0.13∗∗∗
(3.89)

0.11∗∗∗
(3.90)

0.08∗∗∗
(3.62)

0.06∗∗∗
(3.38)

0.05∗∗∗
(3.17)

0.05∗∗∗
(2.89)

0.02
(1.46)

−0.26∗∗∗
(−5.56)

Low 0.63∗∗∗
(10.91)

0.48∗∗∗
(8.30)

0.38∗∗∗
(8.21)

0.32∗∗∗
(8.36)

0.24∗∗∗
(9.62)

0.22∗∗∗
(8.19)

0.20∗∗∗
(7.68)

0.17∗∗∗
(7.49)

0.14∗∗∗
(7.23)

0.12∗∗∗
(5.56)

−0.51∗∗∗
(−12.81)

M&H 0.21∗∗∗
(5.06)

0.17∗∗∗
(5.06)

0.13∗∗∗
(4.90)

0.10∗∗∗
(4.45)

0.08∗∗∗
(4.31)

0.06∗∗∗
(3.38)

0.04∗∗∗
(2.85)

0.03∗∗
(2.04)

0.02
(1.18)

−0.01
(−0.73)

−0.22∗∗∗
(−6.99)

L − M&H 0.42∗∗∗
(6.07)

0.31∗∗∗
(4.87)

0.24∗∗∗
(4.90)

0.21∗∗∗
(5.01)

0.16∗∗∗
(5.57)

0.16∗∗∗
(5.26)

0.15∗∗∗
(5.45)

0.14∗∗∗
(5.41)

0.13∗∗∗
(5.41)

0.13∗∗∗
(5.37)

−0.29∗∗∗
(−5.98)

VW Forecast Errors
Full Sample 0.26∗∗∗

(5.13)
0.16∗∗∗
(4.34)

0.11∗∗∗
(3.94)

0.08∗∗∗
(3.41)

0.05∗∗∗
(3.06)

0.04∗∗
(2.32)

0.02∗
(1.67)

0.01
(1.15)

−0.00
(−0.02)

−0.03∗∗
(−2.06)

−0.29∗∗∗
(−7.14)

High 0.14∗∗∗
(2.85)

0.08∗∗∗
(2.94)

0.04∗
(1.80)

0.02
(1.30)

0.01
(0.58)

−0.00
(−0.09)

−0.02
(−1.23)

−0.02∗
(−1.76)

−0.04∗∗∗
(−2.83)

−0.07∗∗∗
(−4.26)

−0.21∗∗∗
(−5.24)

Medium 0.20∗∗∗
(3.87)

0.11∗∗∗
(3.10)

0.08∗∗∗
(2.99)

0.07∗∗
(2.44)

0.05∗∗
(2.25)

0.02
(1.25)

0.01
(0.77)

0.00
(0.42)

0.00
(0.12)

−0.03∗∗
(−2.58)

−0.23∗∗∗
(−5.29)

Low 0.54∗∗∗
(7.97)

0.34∗∗∗
(5.45)

0.24∗∗∗
(5.18)

0.17∗∗∗
(4.86)

0.12∗∗∗
(4.61)

0.13∗∗∗
(5.18)

0.11∗∗∗
(4.71)

0.08∗∗∗
(4.16)

0.06∗∗∗
(2.86)

0.04∗∗
(2.08)

−0.50∗∗∗
(−8.67)

M&H 0.17∗∗∗
(4.62)

0.10∗∗∗
(3.96)

0.06∗∗∗
(3.27)

0.05∗∗∗
(2.61)

0.03∗∗
(1.98)

0.01
(0.85)

−0.00
(−0.27)

−0.01
(−0.96)

−0.02∗
(−1.84)

−0.05∗∗∗
(−4.34)

−0.22∗∗∗
(−7.20)

L − M&H 0.37∗∗∗
(5.11)

0.25∗∗∗
(3.80)

0.18∗∗∗
(3.67)

0.13∗∗∗
(3.43)

0.09∗∗∗
(3.02)

0.12∗∗∗
(4.44)

0.11∗∗∗
(4.74)

0.09∗∗∗
(4.28)

0.08∗∗∗
(3.44)

0.09∗∗∗
(3.92)

−0.28∗∗∗
(−4.61)
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Table 7 Conditional Alphas of Long and Short Legs of WML

The table reports conditional unadjusted and factor-adjusted returns earned by the long and short legs of the momentum
portfolio (WML). The return on the long leg is defined as the return on the top decile portfolio in excess of the market return.
The return on the short leg is defined as the market returns in excess of the return on the bottom decile portfolio. The sample
period is 1972:07 to 2022:12. We split the sample period into three volatility states based on the 30%-30% cutoff points for
the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are determined
by classifying a formation period ending in month t− 1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂WML,t−1

belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. The “Low” column provides alphas in Low-RV
months, while the “M&H” column presents alphas in the subsample combining Medium-RV and and High-RV states. The
column labeled “Dif” presents differences in alphas between the Low-RV subsample and the M&H subsample. The factor
models considered include: the market model (Sharpe 1964; Lintner 1965; Black 1972, CAPM), the Fama-French 5-factor
model (Fama and French 2015, FF5), the q-factor model (Hou, Xue, and Zhang 2015, q4), the risk-and-behavioral 3-factor
model (Daniel, Hirshleifer, and Sun 2020, BF3), and the FF5 model augmented with the (off-the-shelf) factor momentum
strategy of Ehsani and Linnainmaa (2022, EL6). Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Long − Market Market − Short

Low M&H Dif Low M&H Dif

Constant 0.82∗∗∗
(4.08)

0.35∗
(1.89)

0.47∗
(1.72)

1.65∗∗∗
(7.65)

0.05
(0.15)

1.60∗∗∗
(4.15)

CAPM 0.76∗∗∗
(3.93)

0.25
(1.35)

0.51∗
(1.90)

1.71∗∗∗
(8.27)

0.44
(1.62)

1.27∗∗∗
(3.70)

FF5 0.98∗∗∗
(4.74)

0.36∗∗
(2.12)

0.62∗∗
(2.31)

1.39∗∗∗
(5.99)

0.35
(1.24)

1.04∗∗∗
(2.83)

q4 0.59∗∗∗
(2.86)

0.13
(0.69)

0.47∗
(1.68)

1.06∗∗∗
(4.62)

−0.22
(−0.82)

1.29∗∗∗
(3.62)

BF3 0.44
(1.58)

0.16
(0.94)

0.28
(0.85)

0.86∗∗∗
(3.48)

−0.54∗
(−1.68)

1.40∗∗∗
(3.45)

EL6 0.55∗∗∗
(2.59)

0.05
(0.38)

0.50∗
(1.95)

0.73∗∗∗
(3.12)

−0.23
(−1.03)

0.96∗∗∗
(2.98)
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Table 8 52-Week-High Momentum: Time-series and Cross-sectional Variation in Analyst Forecast Errors

This table presents the variation in analyst forecast errors across pth-sorted deciles and different momentum volatility states. pth represents the ratio of
current price to 52-week high price at the end of month t− 2. For each firm, at the end of each portfolio formation month (t− 1), we aggregate all analysts’
forecasts for the firm’s forthcoming quarterly earnings per share (EPS) and then calculate analyst forecast errors using the mean EPS forecast along with the
actual EPS based on Eq. (3.16). At the end of each formation month (t− 1), we sort stocks into deciles using pth. Portfolio membership mirrors that used
in the construction of decile portfolios. Within each decile, we compute the equal-weighted and value-weighted average (denoted as EW and VW) forecast
errors using the full sample, the three subsamples (High-RV, Medium-RV, and Low-RV) and Medium- and High-RV subsamples combined. The “L − M&H”
row shows differences in EW or VW forecast errors across deciles. The sample includes 52-week high signals formed between 1983:12 and 2022:11. Note
that subsamples (i.e., momentum volatility states) are determined using the sample period of 1972:07 to 2022:12 with the 30%-30% cutoff points. t-statistics
adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in parentheses.

Decile L 2 3 4 5 6 7 8 9 H H − L

EW Forecast Errors
Full Sample 0.31∗∗∗

(5.42)
0.25∗∗∗
(5.59)

0.19∗∗∗
(5.15)

0.15∗∗∗
(4.80)

0.12∗∗∗
(4.63)

0.08∗∗∗
(3.79)

0.06∗∗∗
(3.14)

0.05∗∗∗
(2.72)

0.03∗
(1.89)

0.02
(1.17)

−0.30∗∗∗
(−6.64)

High 0.13∗∗∗
(2.81)

0.12∗∗∗
(2.82)

0.09∗∗
(2.54)

0.06∗∗
(2.05)

0.05∗
(1.80)

0.02
(0.99)

0.00
(0.15)

−0.01
(−0.42)

−0.02
(−1.08)

−0.04∗∗∗
(−2.76)

−0.17∗∗∗
(−4.45)

Medium 0.28∗∗∗
(4.74)

0.21∗∗∗
(4.91)

0.16∗∗∗
(4.37)

0.12∗∗∗
(3.90)

0.10∗∗∗
(3.78)

0.06∗∗∗
(2.93)

0.05∗∗∗
(2.60)

0.04∗∗
(2.33)

0.02
(1.50)

0.01
(1.15)

−0.26∗∗∗
(−5.41)

Low 0.64∗∗∗
(10.61)

0.51∗∗∗
(8.43)

0.40∗∗∗
(7.85)

0.31∗∗∗
(7.77)

0.26∗∗∗
(7.91)

0.20∗∗∗
(7.47)

0.17∗∗∗
(6.90)

0.15∗∗∗
(6.45)

0.12∗∗∗
(5.76)

0.10∗∗∗
(5.07)

−0.54∗∗∗
(−12.14)

M&H 0.21∗∗∗
(4.96)

0.17∗∗∗
(5.19)

0.13∗∗∗
(4.63)

0.09∗∗∗
(4.01)

0.07∗∗∗
(3.72)

0.04∗∗∗
(2.71)

0.03∗
(1.74)

0.02
(1.22)

0.00
(0.11)

−0.01
(−0.94)

−0.22∗∗∗
(−6.58)

L − M&H 0.43∗∗∗
(6.10)

0.34∗∗∗
(5.11)

0.28∗∗∗
(5.01)

0.22∗∗∗
(5.05)

0.19∗∗∗
(5.12)

0.16∗∗∗
(5.47)

0.14∗∗∗
(5.20)

0.13∗∗∗
(5.07)

0.11∗∗∗
(5.08)

0.11∗∗∗
(4.97)

−0.32∗∗∗
(−6.20)

VW Forecast Errors
Full Sample 0.26∗∗∗

(5.22)
0.18∗∗∗
(4.62)

0.13∗∗∗
(3.81)

0.08∗∗∗
(3.25)

0.07∗∗∗
(3.20)

0.05∗∗∗
(2.72)

0.03∗
(1.79)

0.02
(1.13)

0.00
(0.32)

0.00
(0.13)

−0.26∗∗∗
(−6.56)

High 0.12∗∗∗
(2.60)

0.08∗∗
(2.52)

0.04∗
(1.95)

0.01
(0.35)

0.01
(0.79)

0.00
(0.18)

−0.02
(−1.06)

−0.03∗∗
(−2.34)

−0.03∗∗∗
(−3.07)

−0.04∗∗∗
(−3.20)

−0.16∗∗∗
(−4.20)

Medium 0.21∗∗∗
(4.32)

0.14∗∗∗
(3.69)

0.10∗∗∗
(2.99)

0.07∗∗∗
(2.71)

0.06∗∗
(2.25)

0.03∗
(1.82)

0.02
(1.30)

0.01
(0.58)

0.00
(0.00)

−0.00
(−0.25)

−0.22∗∗∗
(−5.39)

Low 0.56∗∗∗
(9.32)

0.40∗∗∗
(6.12)

0.31∗∗∗
(5.13)

0.21∗∗∗
(5.34)

0.17∗∗∗
(5.34)

0.14∗∗∗
(4.68)

0.10∗∗∗
(4.75)

0.10∗∗∗
(3.54)

0.07∗∗∗
(3.83)

0.07∗∗∗
(3.23)

−0.50∗∗∗
(−11.04)

M&H 0.17∗∗∗
(4.82)

0.11∗∗∗
(4.25)

0.07∗∗∗
(3.31)

0.04∗∗
(2.27)

0.04∗∗
(2.17)

0.02
(1.37)

0.00
(0.24)

−0.01
(−0.95)

−0.02∗
(−1.92)

−0.02∗∗
(−2.02)

−0.19∗∗∗
(−6.86)

L − M&H 0.40∗∗∗
(5.97)

0.29∗∗∗
(4.22)

0.24∗∗∗
(3.91)

0.17∗∗∗
(4.07)

0.14∗∗∗
(3.96)

0.12∗∗∗
(3.92)

0.10∗∗∗
(4.30)

0.10∗∗∗
(3.63)

0.08∗∗∗
(4.54)

0.09∗∗∗
(3.78)

−0.31∗∗∗
(−6.45)
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Table 9 Performance of Momentum Conditional on Market States

The set of columns labeled “y = WML” presents unadjusted returns, alphas and Sharpe ratios of the momentum (WML)
strategy. The first column presents unconditional performance of WML. The next two columns report the performance of the
WML strategy conditional on market states, covering the sample period of 1972:07 to 2022:12. The market state for a formation
period ending in month t−1 is determined by the cumulative market return over the past year. The market is classified as “Up”
if the past year’s return is non-negative, and “Down” if it is negative. The column labeled “Up − Down” presents differences
in alphas or Sharpe ratios between Up markets and Down markets. “p-value” denotes the p-value of the difference in Sharpe
ratios computed from 100,000 bootstrap samples. The set of columns labeled “y = Con. WML” presents raw excess returns,
factor-adjusted returns and Sharpe ratios for three conditional momentum strategies. In Column (1), investors are assumed to
hold only the risk-free asset (with zero excess return) except in Up-Market months when the momentum strategy is executed.
Column (2) corresponds to a strategy where the market factor portfolio is held at all times except in Up-Market months when
the momentum strategy is implemented. Column (3) corresponds to a strategy where investors hold WML in Up-Market
months and the reverse of the momentum strategy (i.e., losers-minus-winners) in Down-Market months. The factor models
considered include: the market model (Sharpe 1964; Lintner 1965; Black 1972, CAPM), the Fama-French 5-factor model (Fama
and French 2015, FF5), the q-factor model (Hou, Xue, and Zhang 2015, q4), the risk-and-behavioral 3-factor model (Daniel,
Hirshleifer, and Sun 2020, BF3), and the FF5 model augmented with the (off-the-shelf) factor momentum strategy of Ehsani
and Linnainmaa (2022, EL6). Heteroskedasticity-adjusted t-statistics are shown in parentheses.

y = WML y = Con. WML

Unc. Up Down Up − Down (1) (2) (3)

Constant 1.02∗∗∗
(3.38)

1.34∗∗∗
(4.79)

−0.07
(−0.08)

1.41
(1.44)

1.04∗∗∗
(4.77)

1.08∗∗∗
(4.40)

1.05∗∗∗
(3.49)

Factor-Adjusted Returns
CAPM 1.21∗∗∗

(4.24)
1.28∗∗∗
(4.64)

0.12
(0.16)

1.16
(1.42)

1.01∗∗∗
(4.70)

0.83∗∗∗
(3.58)

0.81∗∗∗
(2.87)

FF5 1.24∗∗∗
(3.87)

1.60∗∗∗
(5.64)

−0.34
(−0.49)

1.93∗∗∗
(2.60)

1.24∗∗∗
(5.44)

1.10∗∗∗
(4.55)

1.25∗∗∗
(4.43)

q4 0.41
(1.25)

1.00∗∗∗
(3.04)

−0.95
(−1.54)

1.94∗∗∗
(2.78)

0.84∗∗∗
(3.37)

0.77∗∗∗
(2.83)

1.26∗∗∗
(3.51)

BF3 −0.01
(−0.02)

0.59∗
(1.91)

−1.40∗
(−1.82)

2.00∗∗
(2.40)

0.60∗∗
(2.57)

0.66∗∗
(2.56)

1.20∗∗∗
(3.04)

EL6 0.06
(0.23)

0.50∗∗
(2.06)

−0.95
(−1.55)

1.45∗∗
(2.20)

0.60∗∗∗
(3.03)

0.63∗∗∗
(2.71)

1.14∗∗∗
(3.37)

Sharpe Ratios
SR 0.48 0.77 -0.02 0.79 0.67 0.62 0.49
p-value - - - 0.04 - - -
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Appendix

A Supplementary Tables

Table A1 Detailed Regression Results: Unconditional Performance of WML

This table provides unconditional regression results supplementary to those reported in Table 1.

RAW CAPM FF5 q4 BF3 EL6

α 1.02∗∗∗
(3.38)

1.21∗∗∗
(4.24)

1.24∗∗∗
(3.87)

0.41
(1.25)

−0.01
(−0.02)

0.06
(0.23)

βMKT −0.32∗∗∗
(−3.36)

−0.30∗∗∗
(−3.10)

−0.23∗∗∗
(−2.97)

−0.18∗∗
(−2.13)

−0.13∗
(−1.93)

βSMB −0.14
(−0.86)

−0.45∗∗∗
(−3.66)

βHML −0.82∗∗∗
(−4.91)

−0.71∗∗∗
(−5.45)

βCMA 0.59∗∗
(2.20)

−0.07
(−0.40)

βRMW 0.20
(0.92)

0.16
(1.33)

βME 0.30∗
(1.83)

βIA −0.25
(−1.14)

βROE 1.46∗∗∗
(7.37)

βPEAD 1.78∗∗∗
(6.71)

βFIN 0.14
(1.16)

βFMOM 3.93∗∗∗
(12.99)

R2
adj 0.00 0.04 0.10 0.27 0.24 0.49

N 606 606 606 606 606 606
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Table A2 Detailed Regression Results: Conditional Performance of WML

This table provides conditional regression results supplementary to those reported in Table 1. Panel A presents estimated alphas and factor loadings in
three volatility states, whereas Panel B reports differences in these estimates between the Low-RV subsample and the rest of the sample (i.e., High- and
Medium-RV subsamples combined).

Panel A: Estimated alphas and factor loadings in three volatility states

High RV Medium RV Low RV

CAPM FF5 q4 BF3 EL6 CAPM FF5 q4 BF3 EL6 CAPM FF5 q4 BF3 EL6
α 0.72

(1.03)
0.31
(0.42)

−0.23
(−0.34)

−0.23
(−0.32)

−0.41
(−0.77)

0.51
(1.33)

0.80∗
(1.86)

−0.19
(−0.42)

−0.49
(−1.13)

0.22
(0.67)

2.47∗∗∗
(7.85)

2.37∗∗∗
(6.06)

1.66∗∗∗
(4.32)

1.30∗∗∗
(2.99)

1.28∗∗∗
(3.30)

βMKT −0.77∗∗∗
(−4.69)

−0.66∗∗∗
(−3.80)

−0.39∗∗∗
(−2.85)

−0.58∗∗∗
(−4.22)

−0.30∗∗
(−2.51)

−0.00
(−0.00)

−0.03
(−0.20)

0.09
(0.78)

0.16
(1.21)

−0.03
(−0.27)

0.01
(0.06)

−0.03
(−0.33)

−0.09
(−0.97)

0.08
(0.87)

−0.08
(−1.07)

βSMB 0.03
(0.10)

−0.69∗∗∗
(−2.60)

−0.52∗∗∗
(−2.65)

−0.53∗∗∗
(−3.23)

0.22
(1.11)

−0.02
(−0.11)

βHML −1.08∗∗∗
(−4.64)

−0.59∗∗∗
(−3.24)

−0.45∗
(−1.88)

−0.78∗∗∗
(−2.95)

0.00
(0.01)

−0.58∗∗∗
(−3.28)

βCMA 0.75∗
(1.68)

−0.13
(−0.52)

0.04
(0.10)

−0.10
(−0.31)

0.01
(0.02)

−0.38
(−1.44)

βRMW 0.35
(1.19)

0.12
(0.62)

−0.40
(−1.48)

−0.43∗∗
(−2.07)

0.50
(1.58)

−0.03
(−0.10)

βME 0.74∗∗∗
(2.89)

−0.15
(−0.87)

0.35∗
(1.91)

βIA −0.87∗∗
(−2.57)

0.36
(1.25)

0.38
(1.65)

βROE 1.77∗∗∗
(6.08)

1.16∗∗∗
(5.88)

0.92∗∗∗
(4.94)

βPEAD 2.17∗∗∗
(5.42)

1.28∗∗∗
(4.40)

1.13∗∗∗
(3.89)

βFIN 0.09
(0.50)

0.18
(1.03)

0.27∗
(1.89)

βFMOM 4.24∗∗∗
(9.14)

3.54∗∗∗
(7.94)

3.14∗∗∗
(7.21)

R2
adj 0.14 0.22 0.41 0.37 0.59 -0.00 0.07 0.16 0.15 0.38 -0.01 0.00 0.13 0.12 0.29

Panel B: Differences in alphas and factor loadings between the Low-RV subsample and the rest of the sample.

Low − Medium&High

CAPM FF5 q4 BF3 EL6
α 1.78∗∗∗

(3.62)
1.65∗∗∗
(2.93)

1.75∗∗∗
(3.15)

1.68∗∗∗
(2.73)

1.45∗∗∗
(2.98)

βMKT 0.43∗∗∗
(2.79)

0.36∗∗
(2.25)

0.15
(1.10)

0.35∗∗
(2.54)

0.09
(0.77)

βSMB 0.41
(1.51)

0.55∗∗∗
(2.68)

βHML 0.95∗∗∗
(3.23)

0.11
(0.50)

βCMA −0.68
(−1.50)

−0.37
(−1.13)

βRMW 0.32
(0.80)

−0.13
(−0.43)

βME 0.01
(0.02)

βIA 0.82∗∗
(2.33)

βROE −0.65∗∗
(−2.22)

βPEAD −0.68
(−1.64)

βFIN 0.18
(0.93)

βFMOM −0.89
(−1.61)
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Table A3 Conditional Performance of Momentum Relative to Other Factor Models

The set of columns labeled “y = WML” in Panel A presents raw excess returns and factor-adjusted returns (a.k.a alphas) of
the momentum (WML) strategy. The first three columns of this set report the performance of WML conditional on volatility
states. The sample period is 1972:07 to 2022:12. We split the sample period into three volatility states based on the 30%-30%
cutoff points for the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states
are determined by classifying a formation period ending in month t − 1 as High-RV, Medium-RV, or Low-RV, according to
whether σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. The column labeled “L − M&H”
presents differences in alphas or Sharpe ratios between the Low-RV subsample and the rest of the sample (i.e., High- and
Medium-RV subsamples combined). The columns under “y = Con. WML” presents raw excess returns, factor-adjusted returns
and Sharpe ratios for four conditional momentum strategies introduced in Section 3.3.2. The factor models considered include:
the alternative q-factor model of Novy-Marx (2015b, q4a) where the ROE factor is decomposed into the lag-ROE and ∆ROE
factors, the Fama and French (1993) 3-factor model augmented by Standardized Unexpected Earnings (SUE) factor and the
factor based on 4-day Cumulative Abnormal Returns surrounding the latest quarterly earnings announcement (CAR4) (Novy-
Marx 2015a, NM5), and the augmented q-factor model of Hou et al. (2021, q5). The construction of the lag-ROE, ∆ROE, SUE
and CAR4 factors is detailed in Section IA1 of the Internet Appendix. Heteroskedasticity-adjusted t-statistics are shown in
parentheses.

y = WML y = Con. WML

Unc. Low M&H L − M&H (1) (2) (3) (4)

Constant 1.02∗∗∗
(3.38)

2.47∗∗∗
(7.87)

0.40
(0.98)

2.07∗∗∗
(4.03)

0.74∗∗∗
(7.08)

1.22∗∗∗
(6.46)

0.67∗∗
(2.52)

1.24∗∗∗
(6.27)

Factor-Adjusted Returns
q4a 0.08

(0.27)
1.19∗∗∗
(3.31)

−0.28
(−0.83)

1.47∗∗∗
(2.99)

0.58∗∗∗
(5.46)

0.77∗∗∗
(5.23)

0.97∗∗∗
(3.07)

0.64∗∗∗
(3.46)

NM5 −0.35
(−1.10)

0.63
(1.61)

−0.62∗
(−1.69)

1.25∗∗
(2.34)

0.51∗∗∗
(4.92)

0.69∗∗∗
(4.63)

1.15∗∗∗
(3.03)

0.38∗∗
(2.01)

q5 −0.10
(−0.31)

1.06∗∗∗
(2.61)

−0.49
(−1.21)

1.55∗∗∗
(2.71)

0.54∗∗∗
(4.69)

0.76∗∗∗
(5.09)

1.05∗∗∗
(3.27)

0.51∗∗
(2.33)
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IA1 Variable and Portfolio Construction

IA1.1 Before-1966 Daily WML Returns

For WML portfolios between Jan 1927 and December 1966, whose daily returns are not

available on the q-data library, we construct them along the lines of Hou, Xue, and Zhang

(2020)’s methodology. We supplement Compustat book equity data with historical book

equity data of Davis, Fama, and French (2000). We keep firms with missing book equity

so that the CRSP stocks that are not covered by the dataset of Davis, Fama, and French

(2000) or Compustat are included in our sample. The correlation between our monthly

(daily) WML returns and those from Lu Zhang’s data library over the 1967–2022 period is

99.8% (99.7%).

IA1.2 Earnings Surprise Measures

IA1.2.1 Returns Surrounding Earnings Announcement Date

We follow prior studies (e.g., Chan, Jegadeesh, and Lakonishok 1996; Daniel, Hirshleifer,

and Sun 2020; Hou, Xue, and Zhang 2020) to compute 4-day returns surrounding quarterly

earnings announcement date. Specifically, We define the cumulative abnormal return sur-

rounding an quarterly earnings announcement date from two trading days preceding that to

the one trading day after that (car4), which is given by

car4 =
+1∑

d=−2

rid − rmd, (IA1.1)

where rid denotes stock i’s return on day d, rmd denotes return of the CRSP value-weighted

market index on day d, and d = 0 corresponds to the earnings announcement date. When an

earnings announcement date is not a trading day, we regard the first trading day subsequent

to that as day 0. We remove stocks with more than two missing returns over the 4-day

window; car4 is assumed to be observable at the end of day 1. The unadjusted 4-day

announcement returns are defined as:

cr4 =
+1∑

d=−2

rid. (IA1.2)
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IA1.2.2 Standardized Unexpected Earnings

Following Foster, Olsen, and Shevlin (1984) and Hou, Xue, and Zhang (2020), the standard-

ized unexpected earnings (sue) is given by

sue =
epspxqadjq − E[epspxqadjq ])

std(epspxqadjq − E[epspxqadjq ])
, (IA1.3)

where epspxqadjq denotes the split-adjusted earnings per share in quarter q. Quarterly earn-

ings per share are assumed to follow a seasonal random walk, that is,

E[epspxqadjq ] = epspxqadjq−4, (IA1.4)

where epspxqadjq−4 denotes the split-adjusted earnings per share in quarter q − 4. We use the

innovations in quarterly earnings over the past eight (at least six) quarters to compute their

standard deviation (“std”). Quarterly earnings are assumed to be publicly available at the

end of the month in which they are announced.

IA1.3 Decomposition of Quarterly ROE

Novy-Marx (2015b) decomposes quarterly return-on-equity (roe) into two components:

roe =
ibqq

beqq−1

=
ibqq−4

beqq−1

+
ibqq − ibqq−4

beqq−1

= lag-roe+∆roe, (IA1.5)

where roe denotes the ratio of quarterly income before extraordinary items (ibqq) over 1-

quarter-lagged book equity (beqq−1) and ibqq−4 denotes quarterly income before extraordinary

items in quarter q− 4. At the end of month t− 1, we construct the lag-ROE (∆ROE) factor

on the basis of the latest lag-roe (∆roe). Quarterly earnings are assumed to be publicly

available at the end of the month in which they are announced.

IA1.4 Factor Portfolio Construction

We construct four factor portfolios based on the most recent sue, car4, lag-roe, and ∆roe,

respectively (denoted as SUE, CAR4, lag-ROE, and ∆ROE). The investment universe is

the same as that for the WML portfolio. Our construction method is in line with Fama and
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French (1996), Novy-Marx (2015b), and Novy-Marx (2015a). Specifically, at the end of each

formation month (t-1), we build six value-weighted portfolios formed on size and one of the

four characteristic variables (denoted as cvar). The size breakpoint is the median market

equity of NYSE stocks, and the cvar breakpoints are the 30th and 70th NYSE percentiles.

The factor return is calculated as the average return of the two high-cvar portfolios in excess

of the average return of the two low-cvar portfolios. All factor portfolios are rebalanced

monthly.

IA1.5 52-week High Momentum

Following George, Hwang, and Li (2018), the underlying variable of the 52-week high anomaly

is the ratio of split-adjusted price at the end of month t−2 to the highest daily split-adjusted

price over the past 12 months from the first day of month t − 13 to the last day of month

t − 2 (denoted as pth). We remove stocks with incomplete price history when computing

pth. Consistent with the momentum signal construction, we skip month t − 1 to avoid the

effect of short-term reversal (Jegadeesh 1990). We follow the literature (e.g., Hou, Xue, and

Zhang 2015; George, Hwang, and Li 2018; Hou, Xue, and Zhang 2020) to use pth smaller

than one to compute NYSE breakpoints on pth since a disproportionally large number of

stocks approach the 52-week high at the same time (i.e., pth = 1). We calculate monthly

value-weighted returns for each decile in month t using the market equity at the end of

month t− 1 as weights. Note that we follow George, Hwang, and Li (2018) and only remove

financial firms in the construction of the PTH portfolio.

IA2 Additional Results

IA2.1 Conditionality of WML: Alternative Regression Specifica-

tion

In this section, we directly use σ̂
WML,t−1

to test the conditionality of WML. Our time-series

regression specification, which is based on the conditional CAPM of Shanken (1990) and
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allows alphas and factor loadings of WML to vary with momentum risk, is given by:

WMLt = α0 + αzzt−1 +
K∑
k=1

(βk,0 + βk,zzt−1)fkt + ϵt, (IA2.1)

where zt−1 denotes the log realized volatility of WML in month t − 1 (log(σ̂
WML,t−1

)) and

fkt denotes factor k’s return in month t. Note that zt−1 is demeaned and standardized

so that αz captures the response of the factor-adjusted return of WML to a one standard

deviation shock in log(σ̂
WML,t−1

), while α0 represents the factor-adjusted return of WML

when log(σ̂
WML,t−1

) is at its average level. The regression results are reported in Table IA2.

[Insert Table IA2 near here]

Each factor model is associated with two sets of estimated coefficients, with odd-numbered

column providing the results of unconditional regression of WML on factor portfolios and

even-numbed column providing conditional regression results based on Eq. (IA2.1).

IA2.2 Additional Tables
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Table IA1 Full Regression Results for Four Volatility-managed Momentum Strategies

This table provide regression results in addition to those reported in Table 2. Panels A through D correspond to Columns (1)
through (4) of Table 2, respectively.

Panel A: Column (1) of Table 2

CAPM FF5 q4 BF3 EL6

α 0.75∗∗∗
(7.05)

0.74∗∗∗
(6.45)

0.64∗∗∗
(5.71)

0.56∗∗∗
(5.14)

0.60∗∗∗
(5.49)

βMKT −0.01
(−0.25)

−0.01
(−0.32)

0.01
(0.23)

0.03
(0.93)

0.01
(0.37)

βSMB 0.01
(0.25)

−0.03
(−0.54)

βHML −0.00
(−0.10)

0.01
(0.21)

βCMA −0.03
(−0.44)

−0.11
(−1.54)

βRMW 0.04
(1.03)

0.04
(0.84)

βME 0.05
(1.09)

βIA 0.03
(0.59)

βROE 0.15∗∗∗
(3.21)

βPEAD 0.20∗∗∗
(3.98)

βFIN 0.07∗∗
(2.52)

βFMOM 0.47∗∗∗
(4.67)

Panel B: Column (2) of Table 2

CAPM FF5 q4 BF3 EL6

α 0.80∗∗∗
(5.63)

0.86∗∗∗
(5.73)

0.83∗∗∗
(5.53)

0.73∗∗∗
(4.76)

0.76∗∗∗
(5.06)

βMKT 0.73∗∗∗
(15.50)

0.71∗∗∗
(15.20)

0.72∗∗∗
(15.46)

0.73∗∗∗
(14.74)

0.73∗∗∗
(15.61)

βSMB −0.04
(−0.66)

−0.06
(−1.13)

βHML 0.06
(1.09)

0.07
(1.21)

βCMA −0.11
(−1.20)

−0.17∗
(−1.73)

βRMW −0.10∗
(−1.83)

−0.10∗
(−1.79)

βME −0.02
(−0.31)

βIA 0.00
(0.02)

βROE −0.06
(−1.08)

βPEAD 0.10
(1.62)

βFIN 0.00
(0.07)

βFMOM 0.34∗∗∗
(3.05)
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Table continues

Panel C: Column (3) of Table 2

CAPM FF5 q4 BF3 EL6

α 0.49∗∗
(2.00)

0.52∗
(1.89)

0.92∗∗∗
(2.93)

0.96∗∗∗
(2.75)

1.16∗∗∗
(4.21)

βMKT 0.31∗∗∗
(3.78)

0.30∗∗∗
(3.63)

0.30∗∗∗
(3.97)

0.29∗∗∗
(3.73)

0.21∗∗∗
(2.91)

βSMB −0.03
(−0.25)

0.13
(1.04)

βHML 0.70∗∗∗
(4.56)

0.64∗∗∗
(5.12)

βCMA −0.61∗∗
(−2.39)

−0.25
(−1.29)

βRMW −0.17
(−0.82)

−0.15
(−1.04)

βME −0.30∗∗
(−2.12)

βIA 0.34
(1.53)

βROE −0.92∗∗∗
(−4.22)

βPEAD −0.90∗∗∗
(−3.28)

βFIN 0.08
(0.68)

βFMOM −2.13∗∗∗
(−6.13)

Panel D: Column (4) of Table 2

CAPM FF5 q4 BF3 EL6

α 1.30∗∗∗
(6.63)

1.35∗∗∗
(6.18)

0.89∗∗∗
(4.17)

0.54∗∗
(2.54)

0.68∗∗∗
(3.77)

βMKT −0.10∗
(−1.81)

−0.10∗
(−1.75)

−0.05
(−0.90)

0.00
(0.07)

−0.01
(−0.11)

βSMB −0.09
(−0.92)

−0.27∗∗∗
(−3.32)

βHML −0.32∗∗∗
(−3.47)

−0.25∗∗∗
(−3.00)

βCMA 0.14
(1.02)

−0.23∗
(−1.95)

βRMW 0.07
(0.62)

0.04
(0.56)

βME 0.12
(1.25)

βIA −0.06
(−0.55)

βROE 0.70∗∗∗
(8.33)

βPEAD 1.02∗∗∗
(8.84)

βFIN 0.14∗∗
(2.28)

βFMOM 2.25∗∗∗
(12.23)
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Table IA2 Performance of Momentum Relative to Unconditional and Conditional Factor Models

This table presents the performance of the momentum (WML) strategy in terms of both unadjusted and factor-adjusted returns, along with the loadings
on respective factors under unconditional and conditional model structures. For odd-numbered columns (excluding column (1)), the factor models are
considered unconditional, whereas for even-numbered columns (excluding column (2)), the abnormal returns and factor loadings are considered conditional,
varying with the lagged natural logarithm of the realized volatility of momentum (denoted as z), which is demeaned and standardized. The factor models
considered include: the market model (Sharpe 1964; Lintner 1965; Black 1972, CAPM), the Fama-French 5-factor model (Fama and French 2015, FF5),
the q-factor model (Hou, Xue, and Zhang 2015, q4), the risk-and-behavioral 3-factor model (Daniel, Hirshleifer, and Sun 2020, BF3), and the FF5 model
augmented with the (off-the-shelf) factor momentum strategy of Ehsani and Linnainmaa (2022, EL6). Heteroskedasticity-adjusted t-statistics are shown in
parentheses. The sample period is 1972:07 to 2022:12.

Constant CAPM FF5 q4 BF3 EL6

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

α0 1.02∗∗∗
(3.38)

1.02∗∗∗
(3.42)

1.21∗∗∗
(4.24)

1.16∗∗∗
(4.22)

1.24∗∗∗
(3.87)

1.23∗∗∗
(4.01)

0.41
(1.25)

0.48
(1.55)

−0.01
(−0.02)

0.25
(0.83)

0.06
(0.23)

0.35
(1.51)

αz −1.14∗∗∗
(−2.70)

−0.95∗∗∗
(−2.74)

−1.13∗∗∗
(−3.39)

−0.90∗∗∗
(−3.00)

−0.72∗
(−1.89)

−0.67∗∗∗
(−2.76)

βMKT −0.32∗∗∗
(−3.36)

−0.23∗∗∗
(−3.17)

−0.30∗∗∗
(−3.10)

−0.23∗∗∗
(−2.84)

−0.23∗∗∗
(−2.97)

−0.11
(−1.50)

−0.18∗∗
(−2.13)

−0.10
(−1.57)

−0.13∗
(−1.93)

−0.11∗
(−1.93)

βMKT×z −0.38∗∗∗
(−4.27)

−0.26∗∗∗
(−2.99)

−0.14∗∗
(−2.11)

−0.29∗∗∗
(−3.94)

−0.13∗∗
(−2.23)

βSMB −0.14
(−0.86)

−0.11
(−0.80)

−0.45∗∗∗
(−3.66)

−0.38∗∗∗
(−3.66)

βSMB×z −0.05
(−0.27)

−0.31∗∗
(−2.12)

βHML −0.82∗∗∗
(−4.91)

−0.53∗∗∗
(−3.74)

−0.71∗∗∗
(−5.45)

−0.60∗∗∗
(−4.37)

βHML×z −0.35∗∗
(−2.37)

−0.01
(−0.05)

βCMA 0.59∗∗
(2.20)

0.18
(0.81)

−0.07
(−0.40)

−0.22
(−1.30)

βCMA×z 0.51∗∗
(2.19)

0.10
(0.67)

βRMW 0.20
(0.92)

−0.06
(−0.26)

0.16
(1.33)

−0.10
(−0.77)

βRMW×z 0.23
(1.27)

0.09
(0.59)

βME 0.30∗
(1.83)

0.25∗
(1.90)

βME×z 0.32∗∗
(2.21)

βIA −0.25
(−1.14)

−0.07
(−0.35)

βIA×z −0.47∗∗∗
(−2.72)

βROE 1.46∗∗∗
(7.37)

1.16∗∗∗
(8.35)

βROE×z 0.46∗∗∗
(2.84)

βPEAD 1.78∗∗∗
(6.71)

1.42∗∗∗
(7.59)

βPEAD×z 0.40
(1.46)

βFIN 0.14
(1.16)

0.14
(1.43)

βFIN×z −0.04
(−0.35)

βFMOM 3.93∗∗∗
(12.99)

3.61∗∗∗
(14.28)

βFMOM×z 0.38
(1.27)

R2
adj 0.00 0.02 0.04 0.13 0.10 0.19 0.27 0.34 0.24 0.30 0.49 0.53

N 606 606 606 606 606 606 606 606 606 606 606 606
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Table IA3 Testing the Investment CAPM with Cross-sectional Fama-MacBeth Regressions: Alternative Profitability Measure

This table reports coefficient estimates from univariate unconditional (“Unc.”) and conditional Fama-MacBeth regressions of
future stock returns (FRET), future profitability (FYK), or future investment growth (FIG) in month t onto the underlying
variable of the momentum (WML) strategy (i.e., the cumulative return from t − 12 to t − 2). FYK represents future sales-
to-lagged-capital ratio, which is defined as annual sales (Compustat item SALE) divided by the one-year-lagged net property,
plant and equipment (Compustat item PPENT). Panel A reports results based on cross-sectional weighted least squares (WLS)
regressions for all stocks, and Panel B presents results based on cross-sectional ordinary least squares (OLS) regressions for
non-micro-cap stocks. Only FRET is multiplied by 100. The first four rows of each panel report respectively unconditional
coefficient estimates (“Unc.”) and coefficient estimates in three volatility states (“High”, “Medium”, and “Low”), computed
based on Eq. (3.9) and Eq. (3.10). The sample includes momentum signals formed between 1972:06 and 2022:05. We split
the sample period into three volatility states based on the 30%-30% cutoff points for the lagged realized volatility (RV) of
momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are determined by classifying a formation period
ending in month t−1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂WML,t−1 belongs in the top 30%, the middle
40%, or the bottom 30%, respectively. The “L − M&H” row shows differences in coefficient estimates between the Low-RV
subsample and the combined Medium- and High-RV subsamples (i.e., subsample M&H), as detailed in Eq. (3.11). t-statistics
adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in parentheses.

FRET FIG FYK

Panel A: WLS (All Stocks)
Unc. 0.77∗∗∗

(3.27)
0.04∗∗∗
(10.51)

2.60∗∗∗
(7.47)

High 0.23
(0.36)

0.05∗∗∗
(5.65)

2.58∗∗∗
(4.14)

Medium 0.47∗∗
(2.03)

0.03∗∗∗
(6.78)

3.19∗∗∗
(6.85)

Low 1.70∗∗∗
(5.18)

0.05∗∗∗
(9.29)

1.83∗∗∗
(4.50)

M&H 0.36
(1.23)

0.04∗∗∗
(7.83)

2.93∗∗∗
(7.40)

L − M&H 1.34∗∗∗
(3.05)

0.01
(1.37)

−1.10∗∗
(−2.20)

Panel B: OLS (Non-Micro-Cap Stocks)
Unc. 0.70∗∗∗

(3.27)
0.05∗∗∗
(12.31)

2.79∗∗∗
(10.45)

High 0.16
(0.28)

0.05∗∗∗
(6.60)

3.12∗∗∗
(5.86)

Medium 0.37∗
(1.93)

0.04∗∗∗
(10.09)

2.77∗∗∗
(8.10)

Low 1.67∗∗∗
(6.38)

0.05∗∗∗
(7.39)

2.48∗∗∗
(6.77)

M&H 0.28
(1.09)

0.04∗∗∗
(10.43)

2.92∗∗∗
(9.30)

L − M&H 1.38∗∗∗
(3.78)

0.00
(0.41)

−0.44
(−0.99)
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Table IA4 Testing the Underreaction Channel: Announcement Returns in the Subsequent Month

This table reports coefficient estimates from univariate unconditional (“Unc.”) and conditional Fama-MacBeth regressions of
returns in month t (FRET) as well as cumulative raw and abnormal returns surrounding the quarterly earnings announcement
in month t (FCR4 and FCAR4) onto the underlying variable of the momentum (WML) strategy (i.e., the cumulative return
from t− 12 to t− 2). Panel A reports results based on cross-sectional weighted least squares (WLS) regressions for all stocks,
and Panel B presents results based on cross-sectional ordinary least squares (OLS) regressions for non-micro-cap stocks. All
dependent variables are multiplied by 100. The first four rows of each panel report respectively unconditional coefficient
estimates (“Unc.”) and coefficient estimates in three volatility states (“High”, “Medium”, and “Low”), computed based on
Eq. (3.9) and Eq. (3.10). The sample includes momentum signals formed between 1972:06 and 2022:05. We split the sample
period into three volatility states based on the 30%-30% cutoff points for the lagged realized volatility (RV) of momentum, as
defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are determined by classifying a formation period ending in month
t − 1 as High-RV, Medium-RV, or Low-RV, according to whether σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the
bottom 30%, respectively. The “L − M&H” row shows differences in coefficient estimates between the Low-RV subsample and
the combined Medium- and High-RV subsamples (i.e., subsample M&H), as detailed in Eq. (3.11). t-statistics adjusted for
heteroskedasticity and autocorrelation (Newey and West 1987) are shown in parentheses.

FRET FCAR4 FCR4

Panel A: WLS (All Stocks)
Unc. 1.00∗∗∗

(3.43)
0.36∗∗∗
(2.89)

0.36∗∗∗
(2.77)

High 0.20
(0.29)

0.33
(1.21)

0.17
(0.65)

Medium 0.71∗
(1.88)

0.12
(0.63)

0.22
(1.01)

Low 2.18∗∗∗
(5.52)

0.70∗∗∗
(5.26)

0.73∗∗∗
(5.15)

M&H 0.49
(1.29)

0.21
(1.26)

0.20
(1.12)

L − M&H 1.69∗∗∗
(3.12)

0.49∗∗
(2.28)

0.53∗∗
(2.28)

Panel B: OLS (Non-Micro-Cap Stocks)
Unc. 0.95∗∗∗

(3.47)
0.48∗∗∗
(4.19)

0.51∗∗∗
(4.56)

High −0.02
(−0.04)

0.20
(1.06)

0.24
(1.26)

Medium 0.86∗∗∗
(2.61)

0.50∗∗∗
(2.70)

0.52∗∗∗
(2.85)

Low 2.04∗∗∗
(6.15)

0.73∗∗∗
(5.44)

0.76∗∗∗
(5.71)

M&H 0.48
(1.51)

0.37∗∗∗
(2.86)

0.40∗∗∗
(3.07)

L − M&H 1.56∗∗∗
(3.44)

0.35∗
(1.87)

0.36∗
(1.90)
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Table IA5 Testing the Underreaction Channel: Time-series and Cross-sectional Variation in Analyst Forecast Errors—Alternative measure

This table presents the variation in analyst forecast errors across r2,12-sorted deciles and different volatility states. r2,12 represents cumulative return from
t−12 to t−2, which is the underlying variable of the momentum (WML) strategy. For each firm, at the end of each portfolio formation month, we aggregate
all analysts’ forecasts for the firm’s forthcoming quarterly earnings per share (EPS) and then calculate analyst forecast errors using the mean EPS forecast
along with the actual EPS based on Eq. (3.16) whose denominator is replaced by stock prices. At the end of each formation month, we sort stocks into
deciles using r2,12. Portfolio membership mirrors that used in the construction of decile portfolios. Within each decile, we compute the equal-weighted and
value-weighted average (denoted as EW and VW) forecast errors using the full sample, the three subsamples (High-RV, Medium-RV, and Low-RV) and
Medium- and High-RV subsamples combined. The “L − M&H” row shows differences in EW or VW forecast errors across deciles. The sample includes
momentum signals formed between 1983:12 and 2022:11. Note that subsamples (or volatility states) are determined using the period of 1972:07 to 2022:12.
t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in parentheses.

Decile L 2 3 4 5 6 7 8 9 H H − L

EW Forecast Errors
Full Sample 0.90∗∗∗

(5.32)
0.42∗∗∗
(5.38)

0.28∗∗∗
(5.04)

0.20∗∗∗
(4.58)

0.14∗∗∗
(4.25)

0.10∗∗∗
(3.44)

0.07∗∗∗
(2.86)

0.05∗∗
(2.11)

0.02
(1.04)

−0.01
(−0.60)

−0.91∗∗∗
(−5.77)

High 0.88∗∗∗
(2.79)

0.40∗∗∗
(2.82)

0.24∗∗∗
(2.69)

0.15∗∗
(2.33)

0.10∗∗
(2.00)

0.05
(1.15)

0.02
(0.55)

−0.01
(−0.23)

−0.04
(−1.25)

−0.06∗∗
(−2.09)

−0.94∗∗∗
(−3.16)

Medium 0.60∗∗∗
(3.58)

0.29∗∗∗
(3.64)

0.19∗∗∗
(3.40)

0.12∗∗∗
(2.92)

0.09∗∗∗
(2.81)

0.06∗∗
(2.23)

0.03∗
(1.83)

0.02
(1.35)

0.01
(0.76)

−0.01
(−0.86)

−0.61∗∗∗
(−3.86)

Low 1.44∗∗∗
(6.33)

0.69∗∗∗
(6.22)

0.49∗∗∗
(6.18)

0.39∗∗∗
(6.18)

0.27∗∗∗
(6.00)

0.24∗∗∗
(5.75)

0.20∗∗∗
(5.26)

0.17∗∗∗
(5.14)

0.12∗∗∗
(3.93)

0.06∗∗
(2.26)

−1.38∗∗∗
(−6.62)

M&H 0.73∗∗∗
(4.02)

0.34∗∗∗
(4.10)

0.21∗∗∗
(3.96)

0.14∗∗∗
(3.45)

0.09∗∗∗
(3.16)

0.05∗∗
(2.12)

0.03
(1.43)

0.01
(0.49)

−0.01
(−0.70)

−0.03∗∗
(−2.06)

−0.77∗∗∗
(−4.42)

L − M&H 0.71∗∗
(2.55)

0.35∗∗∗
(2.65)

0.28∗∗∗
(3.11)

0.25∗∗∗
(3.47)

0.18∗∗∗
(3.52)

0.19∗∗∗
(3.97)

0.18∗∗∗
(4.32)

0.16∗∗∗
(4.33)

0.14∗∗∗
(3.86)

0.10∗∗∗
(3.05)

−0.61∗∗
(−2.37)

VW Forecast Errors
Full Sample 0.47∗∗∗

(4.59)
0.19∗∗∗
(3.70)

0.10∗∗∗
(3.04)

0.06∗∗
(2.25)

0.03
(1.51)

0.02
(0.86)

−0.00
(−0.14)

−0.01
(−0.74)

−0.03∗∗
(−2.24)

−0.07∗∗∗
(−5.71)

−0.54∗∗∗
(−5.59)

High 0.37∗∗∗
(2.73)

0.11∗∗
(1.99)

0.03
(0.99)

−0.00
(−0.02)

−0.01
(−0.76)

−0.03
(−1.54)

−0.05∗∗∗
(−2.93)

−0.05∗∗∗
(−3.09)

−0.07∗∗∗
(−4.09)

−0.10∗∗∗
(−5.48)

−0.47∗∗∗
(−3.55)

Medium 0.29∗∗∗
(2.93)

0.13∗∗
(2.16)

0.06∗
(1.91)

0.04
(1.32)

0.02
(0.72)

−0.01
(−0.30)

−0.02
(−0.93)

−0.03∗∗∗
(−2.81)

−0.04∗∗∗
(−3.09)

−0.07∗∗∗
(−6.87)

−0.36∗∗∗
(−3.83)

Low 0.91∗∗∗
(5.25)

0.39∗∗∗
(4.36)

0.27∗∗∗
(4.20)

0.18∗∗∗
(3.40)

0.13∗∗∗
(2.74)

0.12∗∗∗
(3.18)

0.08∗∗
(2.26)

0.08∗∗
(2.19)

0.03
(1.04)

−0.02
(−0.81)

−0.92∗∗∗
(−5.64)

M&H 0.33∗∗∗
(3.74)

0.12∗∗∗
(2.83)

0.05∗∗
(1.97)

0.02
(1.11)

0.00
(0.13)

−0.02
(−1.06)

−0.03∗∗
(−2.45)

−0.04∗∗∗
(−3.89)

−0.06∗∗∗
(−4.80)

−0.08∗∗∗
(−7.54)

−0.41∗∗∗
(−4.84)

L − M&H 0.58∗∗∗
(3.07)

0.27∗∗∗
(2.79)

0.22∗∗∗
(3.14)

0.16∗∗∗
(2.83)

0.13∗∗
(2.50)

0.14∗∗∗
(3.33)

0.11∗∗∗
(3.00)

0.12∗∗∗
(3.15)

0.09∗∗∗
(2.65)

0.06∗∗∗
(2.67)

−0.51∗∗∗
(−2.87)
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Table IA6 52-week High vs Momentum

This table presents the estimated coefficients from unconditional and conditional Fama-MacBeth-WLS regressions of stock returns in month t onto r2,12 and
pth in month t− 1 separately as well as both of them. t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are shown in
parentheses.

Panel A: 1972:07 – 2022:12

Uncon. High Medium Low Low − Medium&High

pth 1.59∗∗∗
(3.07)

0.11
(0.15)

0.31
(0.28)

−1.41
(−0.89)

0.75
(0.85)

−0.56
(−0.58)

3.99∗∗∗
(4.87)

2.51∗∗
(2.58)

3.44∗∗∗
(3.32)

3.43∗∗
(2.38)

r2,12 0.77∗∗∗
(3.52)

1.04∗∗∗
(4.08)

0.28
(0.47)

1.10∗∗
(2.03)

0.46∗∗
(2.01)

0.98∗∗
(2.54)

1.68∗∗∗
(5.38)

1.06∗∗∗
(2.74)

1.29∗∗∗
(3.10)

0.03
(0.05)

Panel B: 1927:07 – 2022:12

Uncon. High Medium Low Low − Medium&High

pth 1.42∗∗∗
(2.85)

−0.52
(−0.76)

0.08
(0.07)

−2.22
(−1.47)

0.50
(0.78)

−0.94
(−1.12)

3.98∗∗∗
(6.26)

1.75∗
(1.79)

3.66∗∗∗
(4.33)

3.24∗∗
(2.58)

r2,12 0.95∗∗∗
(4.26)

1.49∗∗∗
(5.80)

0.25
(0.39)

1.88∗∗∗
(2.81)

0.66∗∗∗
(3.30)

1.18∗∗∗
(3.77)

2.03∗∗∗
(9.03)

1.53∗∗∗
(4.81)

1.54∗∗∗
(4.36)

0.05
(0.12)
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Table IA7 Performance of PTH Conditional on Momentum Volatility States

The set of columns labeled “y = PTH” in Panel A presents raw excess returns, factor-adjusted returns (a.k.a alphas) and Sharpe
ratios of the 52-week-high (PTH) strategy. The first three columns of this set report the performance of PTH conditional on
volatility states. The sample period is 1972:07 to 2022:12. We split the sample period into three volatility states based on
the 30%-30% cutoff points for the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The
volatility states are determined by classifying a formation period ending in month t− 1 as High-RV, Medium-RV, or Low-RV,
according to whether σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. The column labeled
“L − M&H” presents differences in alphas or Sharpe ratios between the Low-RV subsample and the rest of the sample (i.e.,
High- and Medium-RV subsamples combined). “p-value” denotes the p-value of the difference in Sharpe ratios computed from
100,000 bootstrap samples. The columns under “y = Con. PTH” in Panel A presents raw excess returns, factor-adjusted returns
and Sharpe ratios for three PTH strategies contingent on momentum volatility states. Column (1) assumes investors hold only
the risk-free asset (with zero excess returns), except in Low-RV months when they implement the PTH strategy. Column (2)
describes a strategy where the market factor portfolio is held consistently, except in Low-RV months when the PTH strategy
is implemented. Column (3) corresponds to a strategy where investors implement the PTH strategy in Low-RV months, hold
the risk-free asset in Medium-RV months, and implement the reverse 52-week high strategy in High-RV months (−1×PTH).
Panel B provides conditional alphas earned by long and short legs of PTH. The factor models considered include: the market
model (Sharpe 1964; Lintner 1965; Black 1972, CAPM), the Fama-French 5-factor model (Fama and French 2015, FF5), the
q-factor model (Hou, Xue, and Zhang 2015, q4), the risk-and-behavioral 3-factor model (Daniel, Hirshleifer, and Sun 2020,
BF3), and the FF5 model augmented with the (off-the-shelf) factor momentum strategy of Ehsani and Linnainmaa (2022,
EL6). Heteroskedasticity-adjusted t-statistics are shown in parentheses.

Panel A: Conditional Alphas of PTH and Alphas of Conditional PTH Strategies

y = PTH y = Con. PTH

Unc. Low M&H L − M&H (1) (2) (3)

Constant 0.71∗∗
(2.24)

1.78∗∗∗
(5.72)

0.25
(0.58)

1.53∗∗∗
(2.89)

0.54∗∗∗
(5.40)

1.01∗∗∗
(5.43)

0.53∗
(1.93)

Factor-Adjusted Returns
CAPM 1.18∗∗∗

(4.49)
1.94∗∗∗
(7.16)

0.89∗∗
(2.53)

1.05∗∗
(2.38)

0.61∗∗∗
(6.16)

0.67∗∗∗
(4.06)

0.32
(1.22)

FF5 0.97∗∗∗
(3.48)

1.43∗∗∗
(4.89)

0.78∗∗
(2.21)

0.65
(1.42)

0.64∗∗∗
(6.28)

0.75∗∗∗
(4.46)

0.63∗∗
(2.34)

q4 0.29
(1.06)

0.91∗∗∗
(3.16)

0.10
(0.29)

0.82∗
(1.86)

0.60∗∗∗
(6.12)

0.80∗∗∗
(4.70)

1.15∗∗∗
(4.04)

BF3 −0.49
(−1.56)

0.76∗∗
(2.28)

−0.72∗
(−1.88)

1.47∗∗∗
(2.92)

0.48∗∗∗
(4.81)

0.66∗∗∗
(3.55)

1.22∗∗∗
(3.39)

EL6 0.05
(0.21)

0.77∗∗
(2.48)

0.06
(0.21)

0.71∗
(1.71)

0.55∗∗∗
(5.58)

0.70∗∗∗
(4.02)

1.20∗∗∗
(4.15)

Sharpe Ratios
SR 0.32 1.47 0.10 1.37 0.76 0.76 0.27
p-value - - - 0.00 - - -

Panel B: Conditional Alphas of Long and Short Legs of PTH

Long − Market Market − Short

Low M&H Dif Low M&H Dif

Constant 0.17
(1.63)

0.03
(0.25)

0.14
(0.90)

1.61∗∗∗
(6.48)

0.22
(0.63)

1.39∗∗∗
(3.26)

CAPM 0.21∗∗
(2.13)

0.18∗
(1.71)

0.03
(0.20)

1.73∗∗∗
(7.84)

0.70∗∗
(2.46)

1.02∗∗∗
(2.83)

FF5 0.13
(1.06)

0.14
(1.25)

−0.02
(−0.10)

1.30∗∗∗
(6.22)

0.64∗∗
(2.31)

0.67∗
(1.93)

q4 −0.02
(−0.13)

0.03
(0.25)

−0.05
(−0.27)

0.93∗∗∗
(4.54)

0.07
(0.26)

0.86∗∗∗
(2.62)

BF3 −0.14
(−1.01)

−0.16
(−1.45)

0.03
(0.15)

0.89∗∗∗
(3.45)

−0.55∗
(−1.76)

1.45∗∗∗
(3.56)

EL6 −0.11
(−0.90)

−0.04
(−0.41)

−0.07
(−0.45)

0.88∗∗∗
(3.93)

0.10
(0.44)

0.78∗∗
(2.44)

77



Table IA8 Testing the Investment CAPM with Cross-sectional Fama-MacBeth Regressions: 52-week High

This table reports coefficient estimates from univariate unconditional (“Unc.”) and conditional Fama-MacBeth regressions of
future stock returns (FRET), future profitability (FROE), or future investment growth (FIG) in month t onto the underlying
variable of the 52-week high (PTH) strategy (i.e., the ratio of current price to 52-week high price at the end of month t − 2).
Panel A reports results based on cross-sectional weighted least squares (WLS) regressions for all stocks, and Panel B presents
results based on cross-sectional ordinary least squares (OLS) regressions for non-micro-cap stocks. Only FRET is multiplied by
100. The first four rows of each panel report respectively unconditional coefficient estimates (“Unc.”) and coefficient estimates
in three volatility states (“High”, “Medium”, and “Low”), computed based on Eq. (3.9) and Eq. (3.10). The sample includes
52-week high signals formed between 1972:06 and 2022:05. We split the sample period into three volatility states based on
the 30%-30% cutoff points for the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The
volatility states are determined by classifying a formation period ending in month t− 1 as High-RV, Medium-RV, or Low-RV,
according to whether σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. The “L − M&H” row
shows differences in coefficient estimates between the Low-RV subsample and the combined Medium- and High-RV subsamples
(i.e., subsample M&H), as detailed in Eq. (3.11). t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and
West 1987) are shown in parentheses.

FRET FIG FROE

Panel A: WLS (All Stocks)
Unc. 1.53∗∗∗

(2.88)
0.15∗∗∗
(14.25)

0.53∗∗∗
(12.19)

High 0.12
(0.11)

0.16∗∗∗
(7.82)

0.66∗∗∗
(8.98)

Medium 0.80
(0.88)

0.14∗∗∗
(8.69)

0.51∗∗∗
(10.02)

Low 3.91∗∗∗
(4.51)

0.18∗∗∗
(15.32)

0.42∗∗∗
(6.89)

M&H 0.51
(0.77)

0.15∗∗∗
(11.23)

0.58∗∗∗
(11.97)

L − M&H 3.40∗∗∗
(3.16)

0.03∗
(1.95)

−0.16∗∗
(−2.19)

Panel B: OLS (Non-Micro-Cap Stocks)
Unc. 2.23∗∗∗

(4.38)
0.18∗∗∗
(14.89)

0.46∗∗∗
(13.83)

High 0.72
(0.59)

0.18∗∗∗
(6.53)

0.57∗∗∗
(9.40)

Medium 1.66∗∗∗
(2.64)

0.17∗∗∗
(12.17)

0.45∗∗∗
(12.81)

Low 4.49∗∗∗
(6.55)

0.19∗∗∗
(12.35)

0.35∗∗∗
(9.34)

M&H 1.25∗
(1.95)

0.17∗∗∗
(11.90)

0.50∗∗∗
(13.43)

L − M&H 3.23∗∗∗
(3.43)

0.02
(0.92)

−0.16∗∗∗
(−3.10)
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Table IA9 Testing the Underreaction Channel: Future Announcement Returns—52-week High

This table reports coefficient estimates from univariate unconditional (“Unc.”) and conditional Fama-MacBeth regressions of
returns in month t (FRET) as well as cumulative raw and abnormal returns surrounding the first quarterly earnings announce-
ment subsequent to the formation month t − 1 (FCR4 and FCAR4) onto the underlying variable of the 52-week high (PTH)
strategy (i.e., the ratio of current price to 52-week high price at the end of month t − 2). Panel A reports results based on
cross-sectional weighted least squares (WLS) regressions for all stocks, and Panel B presents results based on cross-sectional
ordinary least squares (OLS) regressions for non-micro-cap stocks. All dependent variables are multiplied by 100. The first four
rows of each panel report respectively unconditional coefficient estimates (“Unc.”) and coefficient estimates in three volatility
states (“High”, “Medium”, and “Low”), computed based on Eq. (3.9) and Eq. (3.10). The sample includes 52-week high signals
formed between 1972:06 and 2022:05. We split the sample period into three volatility states based on the 30%-30% cutoff
points for the lagged realized volatility (RV) of momentum, as defined by σ̂WML,t−1 from Eq. (3.1). The volatility states are
determined by classifying a formation period ending in month t− 1 as High-RV, Medium-RV, or Low-RV, according to whether
σ̂WML,t−1 belongs in the top 30%, the middle 40%, or the bottom 30%, respectively. The “L − M&H” row shows differences
in coefficient estimates between the Low-RV subsample and the combined Medium- and High-RV subsamples (i.e., subsample
M&H), as detailed in Eq. (3.11). t-statistics adjusted for heteroskedasticity and autocorrelation (Newey and West 1987) are
shown in parentheses.

FRET FCAR4 FCR4

Panel A: WLS (All Stocks)
Unc. 1.52∗∗∗

(2.86)
0.78∗∗∗
(3.32)

0.83∗∗∗
(3.38)

High 0.20
(0.17)

0.71
(1.31)

0.59
(1.06)

Medium 0.71
(0.80)

0.22
(0.82)

0.48∗
(1.76)

Low 3.91∗∗∗
(4.54)

1.59∗∗∗
(5.19)

1.53∗∗∗
(4.36)

M&H 0.49
(0.74)

0.43
(1.51)

0.53∗
(1.80)

L − M&H 3.42∗∗∗
(3.19)

1.16∗∗∗
(2.85)

1.00∗∗
(2.22)

Panel B: OLS (Non-Micro-Cap Stocks)
Unc. 2.08∗∗∗

(4.04)
1.47∗∗∗
(7.49)

1.51∗∗∗
(7.69)

High 0.60
(0.48)

1.04∗∗
(2.48)

1.09∗∗∗
(2.64)

Medium 1.57∗∗
(2.47)

1.41∗∗∗
(5.22)

1.52∗∗∗
(5.28)

Low 4.24∗∗∗
(6.28)

1.98∗∗∗
(8.60)

1.91∗∗∗
(11.45)

M&H 1.15∗
(1.81)

1.25∗∗∗
(5.07)

1.34∗∗∗
(5.30)

L − M&H 3.09∗∗∗
(3.35)

0.72∗∗
(2.25)

0.58∗
(1.77)

79



Internet Appendix References

Black, F. 1972. Capital Market Equilibrium with Restricted Borrowing. The Journal of

Business 45:444–55.

Chan, L. K. C., N. Jegadeesh, and J. Lakonishok. 1996. Momentum Strategies. The Journal

of Finance 51:1681–713.

Daniel, K., D. Hirshleifer, and L. Sun. 2020. Short- and Long-Horizon Behavioral Factors.

The Review of Financial Studies 33:1673–736.

Davis, J. L., E. F. Fama, and K. R. French. 2000. Characteristics, Covariances, and Average

Returns: 1929 to 1997. The Journal of Finance 55:389–406.

Ehsani, S., and J. T. Linnainmaa. 2022. Factor Momentum and the Momentum Factor. The

Journal of Finance 77:1877–919.

Fama, E. F., and K. R. French. 1996. Multifactor Explanations of Asset Pricing Anomalies.

The Journal of Finance 51:55–84.

———. 2015. A five-factor asset pricing model. Journal of Financial Economics 116:1–22.

Foster, G., C. Olsen, and T. Shevlin. 1984. Earnings Releases, Anomalies, and the Behavior

of Security Returns. The Accounting Review 59:574–603.

George, T. J., C. Y. Hwang, and Y. Li. 2018. The 52-week high, q-theory, and the cross

section of stock returns. Journal of Financial Economics 128:148–63.

Hou, K., C. Xue, and L. Zhang. 2015. Digesting Anomalies: An Investment Approach. The

Review of Financial Studies 28:650–705.

———. 2020. Replicating Anomalies. The Review of Financial Studies 33:2019–133.

Jegadeesh, N. 1990. Evidence of Predictable Behavior of Security Returns. The Journal of

Finance 45:881–98.

Lintner, J. 1965. Security Prices, Risk, and Maximal Gains From Diversification. The

Journal of Finance 20:587–615.

80



Newey, W. K., and K. D. West. 1987. A Simple, Positive Semi-Definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix. Econometrica 55:703–8.

Novy-Marx, R. 2015a. Fundamentally, Momentum is Fundamental Momentum.

———. 2015b. How Can a Q-Theoretic Model Price Momentum?

Shanken, J. 1990. Intertemporal asset pricing: An Empirical Investigation. Journal of

Econometrics 45:99–120.

Sharpe, W. F. 1964. Capital Asset Prices: A Theory of Market Equilibrium under Conditions

of Risk. The Journal of Finance 19:425–42.

81


	Introduction
	Related Literature
	Empirical Results
	Data
	Definition of Momentum Volatility States
	Conditional Performance of Momentum
	Conditional Regressions
	Conditional Momentum Strategies
	Investment Implications of Momentum's Conditionality

	Direct Tests of Three Economic Mechanisms
	Fama-MacBeth Regressions
	Investment CAPM
	Correlation with Factor Momentum
	Investor Underreaction

	Conditional factor-adjusted returns of long and short legs
	Other Results
	Conditionality of the 52-week High Momentum
	Market States
	Other Factor Models

	Interpreting the Results
	Other Explanations
	Limitations


	Conclusion
	Supplementary Tables
	Variable and Portfolio Construction
	Before-1966 Daily WML Returns
	Earnings Surprise Measures
	Returns Surrounding Earnings Announcement Date
	Standardized Unexpected Earnings

	Decomposition of Quarterly ROE
	Factor Portfolio Construction
	52-week High Momentum

	Additional Results
	Conditionality of WML: Alternative Regression Specification
	Additional Tables



